A VERSATILE TW. FOR MTR FILE TRMSFE mo
MANIPULATIONCU) DEFENCE RESEARCH EST nusmr ATLANTIC
DARTHOUTH (uovn SCOTIR) J B FARRELL J

UNCLASSIFIED DRER-TC-87/303

o EE E m

v 7

EEEF) < !
hhhh.—bsuhm — W °
F .

Ol —W - :

3 L.t IS4

UNLIMITED DISTRIBUTION 2

'* National Defence Défense Nationale

Bureau de Recherche

Research and
Development Branch ot Développment

TECHNICAL COMMUNICATION 87/303
January 13887

lmc ﬂLE;'CQE)'

e —

A VERSATILE TOOL FOR
DATA FILE TRANSFER AND
MANIPULATION

Josegh B. Farrell

Canadi

Defence Centre de
Research Recherches pour la
Establishment { Défense

Atlantic Atlantique

& % St i

T IO RARRA PEARAAS AR

.
o To

15 2 Se' Judis 2 15 g
]

L "Il,

o "
'l. 0
E&"_‘.‘]»’ Pl /'/.-',
d 9

DEFENCE RESEARCH ESTABLISHMENT ATLANTIC

P GROVE STRELTY 0. 80X 1012
DARTMOUTH, N.S.
B2Y 327

TELEPHONE
1902) 428.3100

CENTRE DE RECHERCHES POUR LA DEFENSE ATLANTIQUE

9 GROVE STREET c.® 1012
DARTMOUTM, N &
B2y 32?7

g A s
WIS F IR I AT N P, 1 A S 9 S S s R A, (T S R ARG, LG ALt R SO

-

Oy

- = g~}

v v e v v -

-

-

[d
»

UNLIMITED DISTRIBUTION TR

Q'“c;‘;

o o.',

bt
. ‘ National Defence Défense nationale e
pvr N

Ressarch and :rnuu de recherche SR
.\..’h."'
.'l‘._"]{
o
'1"”4‘,?»

‘.l. :

Tyt

A

~

A VERSATILE TOOL FOR
DATA FILE TRANSFER AND N
MANIPULATION :

%

-
b3
o

Joseph B. Farrell

'’
S

]
LA

3@
P A

o
ey
&5

January 1887

PEPL ST
L]
[
Y Y

4
v

LA
LS
A

SRR
s v

f-
o

Approved by H.M. Merklinger H/Surveillance Acoustics Section

DISTRIBUTION APPROVED BY /7225¢1;:ZL'~“"‘

D/UAD

TECHNICAL COMMUNICATION 87/ 303

2

Ay
)
A
[

s

-~
3
&~
.

.
e ¥
. e

A J
»e
.. /'.f ‘.' 4

At
X0
-

Defence

Research
Establishment |
Atiantic

. o

KAAS
L
R/

h S -

..I
s
%
o,

L/
%

Canadi

XKy
{?fg

[
ART
._
N

o
’\,
‘ oy s

v
o

OV Wy T YA VAN TN AT AT T A s e
'.":’.'{':f.'\'\’\\‘\‘-'\ AR

- $f - "'4,\'

.'.'- p

Q)
Wy

s

Abstract *

This document describes in detail a software tool for manipulating data files. The
Surveillance Acoustics section at Defence Research Establishment Atlantic has acquired
VAX computers over the last few years, and analysis tasks which were formerly done on
PDP-11 computers are now being moved to the VAXen. PDP-11s are still used in the at-
sea data collection role, so some means is necessary of transferring the data files thus
produced to the VAXen for signal processing and analysis. PDP-11 data files are typically
located on 9-track magnetic tape, so one method of transferring the data would be to read
PDP-11 tapes on the VAXen. The software tool described here (a program named
TRANSFER) was written, in part, to perform this data transfer chore, taking into account
the special formats and header information in the files produced by the PDP-11s.
Manipulation of data files already residing on a VAX is also possible using TRANSFER.
The program is versatile, allowing the user to choose channels and data segments to be
transferred between files with a high degree of freedom.

pp AR R .'. T AR R R L RN S P L P N L I ¥ ..\ \(\ P e
A s N Wi .« .. CADREAS BASAS
VoW \','.'\. W ..‘,-', .~ "\!_ -,{_, “ \.. i\ N \) \4,\‘,\‘,\ \‘_\{ ‘f\.'\.-\"

2y oo
X,
[} [

soe

\,\"‘] "

LS

Sommaire

Yo
L
\

Le présent article décrit en détail un outil logicie! permettant lu manipulation de
fichiers de données. La section de 'acoustique de surveillance du Centre de recherches ~
pour la défense, Atlantique. s'est doté d'ordinateurs VAX au cours des derniéres années et o
les travaux d'analyse effectués jusqu'a présent sur des PDP-11 le sont maintenant au .
moven du VAXen. Toutefois, les PDP-11 sont encore utilisés pour la cueillette des A
données en mer; les travaux d'analyse et de traitment des données nécessitent donc une o
méthode de transfert sur le VAXen des fichiers produits pendant la cueillette des données. R
Puisque les bandes magnétiques de 9 pistes constituent le support de mémoire typique des ol
fichiers de données PDP-11. on peut envisager la procédure sutvante comme méthode de >
transfert des données: lecture des données mémorisées sur les bandes PDP-11. puis “
transfert au VVAXen. L'outi] logiciel décnt dans le présent texte (un programme appelé .
TRANSFER) a é1é écrit en partie en vue dassurer cette tiche de transfert des données. en A
fonction des données d'entéte et des formats spéciaux des fichiers produits par le PDP-11.
TRANSFER permet aussi la manipulation des fichiers de données déja mémornisés dans un
ordinateur VAX. Ce logiciel est tres polvvalent et permet & l'utilisateur de chosir avec un
grand degré de liberté les pistes et les segments de données a transférer d'un fichier 4
I"utre. .

."A";

.
r

Y

.
LA
o

e WA
W@ YIS

s

.
B
o
P

.
D)

iv)
Table Of Contents ﬁ
Section Page :
s o S 1
1L INTRODUCTION ..ot et e)
2 FILE FORMATTS i e 1
2.1 Time Series (DAT)File Formatoiiiiiiiiiiiiiiii i, 2
2.2 Fourier Coefficient (FTR)File Format 2
2.3 Power Spectrum (.PWR) File Formato 2
24 VAX and READRTFile Formatscooiiiiiiiiiiinn, 6
3. PROGRAM IMPLEMENTATION ... 6
3.1 Program STUCIUTEooiiiiiiiiiii i 7
3.2 ProgramFeaturescoooviiiiiiiiiiii 7 !
3.3 Implementation Detailsooo 10 :
4. HOW TO USE THE PROGRAMcceviiiiiiieeeeeeee 13 :
S. FUTURE DEVELOPMENTS ... 17
6. CONCLUSIONS AND ACKNOWLEDGEMENTS ...l 18
1)
References ..o 19 "
Appendix Page
A. DETAILS OF USER PROMPTS - INTRODUCTIONcooenal. 20 :
Al. Alphabetical Listing of Promptscoooviiiiiii L. 20
A2. User Messages From TRANSFER (Grouped by Subroutine) 22
A2.1 Messages from TRANSFER main program 22]
A2.2 Messages from Subroutine CHECK 22 .
A2.3 Messages from Subroutine MTFILE0 22
A2.4 Messages from Subroutine GETTAP 23
Al.S Messages from Subroutine CHANNEL_SELECT 23
Al.6 Messages from Subroutine SKIPPER 24
Al.7 Messages from Subroutine DISK._WILDCARD 2§
A2.8 Messages from Subroutine READER 2§
B. PROGRAM LISTING - INTRODUCTION .. 26 3
Bl. Listing of the TRANSFER Main Program 26
BZ. Listing of Data OQutput Routineo L 32
B2 Listing of Mag-Tape File OpenRoutine 33 :
B4. Routine to Allocate and Mount Mag-Tape 36 Q3
BS. Channel Selection Subroutine 36
B6. Routine For Choosing Data Segment To Be Transferred 40
B7. Routine to Decode Switches in Filename 44
B¥. Routine to Determine Wildcard File List 45 :
BY9. Routine for Data Input From File .. 435 4
B10. Transfer Status Routine ... 47 8
o
»
l*

"y PRSI
IIII-’\$1,

W %)

1. INTRODUCTION

Unul recently, data collected at sea by DREA scientists were analvsed almost
exclusively on PDP-11/34s. When the Surveillance Acoustics section began to purchase
V'AX computers, the situation changed drastically. Most analysis tools which existed on
the 11/34s are now available on the VAXen (the accepted plural form for VAX) in a similar
or more powerful form. New tools (such as a suite of shot-analvsis programs) have also
been appearing. The mulii-user nature of the VAXen has made these software tools
avaifable 10 & wider range of users, and consequently more analysis is being performed.

PDP-11s have been used in the at-sea data collection role at DREA for
approximately 10 years, and perform their job very efficiently. Real time data collection
programs write data (generally to 9 track magnetic tape) in a format which has been well
tuned to the needs of DREA scientists over the lifetime of the PDP-11s. Naturally enough,
this format is somewhat foreign to the VAX computer, and data tapes produced on the
PDP-11s cannot be read directly on the VAX without a software interface. To allow more
users to access and analvze raw data, such a software interface has been written, and this
note describes that tool, a program called TRANSFER.

TRANSFER has been written to be as general as possible, leaving many options
open to the user. Most files written to tape by the PDP-11 data acquisition/analysis
programs can be moved from mag-tape to the VAX using this program. The formats
accepted are ".DAT" (time series data files), ".FTR" (Fourier coefficient files), and
“.PWR" (power spectrum files). Other features such as transferring 4 segment of an input
file defined by start and stop umes, or transferring only a subset of the total number of
channels in the input file are also available. Disk space is at a premium on the VAXen (as it
1s on all computers), so the latter feature is an important one. It allows disk space to be
conserved if a4 user wishes to analyze only a few of the channels of input data available.

The default format for VAX disk files created by TRANSFER is binary direct
access. This format allows random access to any block in the file. and is a relatively
compact storage format. Most of the analysis programs now present on the VAXen accept
input files 1n this format. An older format (READRT) is still used by some analvsis
programs, and TRANSFER will use this as its output format if requested.

Size reduction for disk files already on the VAX is desirable in many
circumstances, so TRANSFER will also perform VAX disk file to VAX disk file transfers.
The same options are offered in the disk-to-disk mode as in the tape-10-disk mode.

The next sectuon of this note descnibes the formats of the tape files TRANSFER will
aceept from PDP-1 15 and gives more details on the VAX and READRT disk file formats.
Following that, a detailed description of program implementation will be given. including «
discussion of all the options available. An example of program use is then presented to
give the reader some feeling of how a terminal session proceeds and finally, some
possibilities for future developments of the program are proposed.

2. FILE FORMATS

TRANSFER was originally written to accept Y-track magaetic tapes written by the
DREA PDP-11 data recording programs, and transfer them to VAX files. To make this
document self-contamned. o brief descniption of the format of the various types of tape input

o+ d

"c' 'I" 'l'
he

IR
oAty

‘-’\

h e

7
a

%’

- “y
P4
Ve

Loy
8’y O

- l"'.q
"h"v
A

5

K

h

XA
N4 NNy =
R o

s
YR

,

4

t .
(]

I. [

.
v
1 4

h AT

A

N0 A
a ‘ 4
OSADIY

Y

¢ P

&

3

Xy
200

’

files will be presented here. A fuller description of the file formats and the philosophy
behind their structure is contained in a Technical Communication by D. Caldwell [1]. Disk
file types which are compatible with TRANSFER will also be described.

2.1 Time Series (DAT) File Format

Time series data ((DAT) files are the most common type of input file used with the
TRANSFER program. Time series data are recorded on magnetic tape on the PDP-11s in
this format, and since it is the intention to use the VAX for most analysis, raw input data
will be moved to the VAX via this file type.

Each tape file begins with a 512 byte header which describes the physical
parameters of the file such as record length, sampling frequency, etc. The header is
divided into four blocks - the first 32 bytes form an integer block (2 bytes per integer), the
next 32 bytes form a floating point block (4 bytes per floating-point number), the next 128
bytes form a byte block (1 byte per entry) and the remaining 320 bytes form an ASCII
block (1 character per byte). Table I illustrates these blocks and gives a brief description
of the contents of each location in the header block. A more detailed description of the
meaning of the header block contents can be found in [1].

The data portion of a typical time series file is diagrammed in Figure 1. In the
sample file shown, there are m time samples for each of the n input channels. The values
are multiplexed so that the first time sample for each channel appears in sequence, followed
by the second time sample for each channel, etc. The DREA header actually allows the
time series data to be written in other formats, but the one shown here is used almost
exclusively.

2.2 Fourier Coefficient (FTR) File Format

This type of file is used by analysis programs which require Fourier coefficients but
do not contain an FFT module of their own. Programs for performing interference
cancellation which require ".FTR" files currently exist on the VAX. A program (called
SAFTR) (2] can be used to produce ".FTR" files from “.DAT" files on the VAX.
TRANSFER will work with the ".FTR" format, but the ".DAT" format is more likely to be
encountered.

As in the ".DAT" format, each ".FTR" file begins with a 512 byte header [1]. Table
II gives a brief description of the contents of each location in the ".FTR" header block.
Figure 2 shows the contents of a typical “.FTR" file. In the sample file shown, the data are
multiplexed in a different manner from that in a ".DAT" file. Here, all Fourier coefficients
from each transform of each channel are kept together; that is, blocks of data for each
channel rather than single samples are multiplexed.

2.3 Power Spectrum (.PWR) File Format

A power spectrum tape file is likely to be transferred from tape only if time series
analysis was performed on a PDP-11. SEQFFT is the most widely used spectral analysis
program on the PDP-11s, and the output of that program conforms to the ".PWR" format.
As analysis effort moves to the VAX from the 11s, transfer of this file type is likely to
become less common.

The ".PWR" file begins with a 512 byte header [1]. TABLE III gives a brief
description of the contents of each location in the ".PWR" header block. Figure 3 shows

B X XA RPN

h
W4
»
i
3 3
o 8.
X
ol
INTEGER BLOCK ta
ILABEL(l) = Block size # of 16 bit words/physical block)
ILABEL(2) = Record Size # of words per logical record 35
ILABEL(3) = # of records # of data records in file d?
ILABEL (4) = Repetition rate # of records per repetition cycle DA
ILABEL(S5) = Number type Int=]l,Flt=2,CmplxI=lloct,CF=120ct '\{
ILABEL(6) = Bytes per number eg.: I=2,F=4,CI=4,CF=8 ',
ILABEL(7) = # of channels Must divide evenly into ILABEL(2)
ILABEL(8) = Multiplex length Word=l, Record=Record size .
ILABEL(9) = # accumulations Normally 1 <
ILABEL(10)= X-axis Time=1, Frequency=2 S
ILABEL(1l)= Y-axis Linear=1, Square=2, Log=4 N
ILABEL (12)= Sequence # User assigned, usually increments :(
ILABEL(13)= Block Scaling Power of 2 scaling factor Ny
ILABEL(14)= Spare
ILABEL(15)= Spare
ILABEL(l16)= Spare

FLOATING-POINT BLOCK

FLABEL (l) = Sampling freq(Hz) -ve means heterodyned
FLABEL (2) = Heterodyning freqg. -ve means real heterodyned
FLABEL(3) = Reference level Calibration factor
FLABEL(4) = Max. magnitude
FLABEL (5) = Gain correction 1.00343332 for power of 2
FLABEL(6) = Spare
FLABEL(7) = Spare X
FLABEL(8) = Spare R
h
BYTE BLOCK N
2
BLABEL(1l) = Channel # S
BLABEL (2) = Gain (dB) for channel in BLABEL(1l) —a
BLABEL (3) = Channel #
BLABEL(4) = Gain (dB) for channel in BLABEL(3) i
BLABEL (127)= Channel # o
BLABEL (128)= Gain (dB) for channel in BLABEL(127) .
1‘\‘
ASCII BLOCK
r
ALABEL(l) = First character of ASCII label block Q
. Qs;’
L] r ‘-
ALABEL (320)= Last character of ASCII label block r:-
In
. . Y
Table I: Header contents of a Time Series (DAT) file »
¥ X
. \
&
5
e
i
~ N
Ychan1 | Ychan2 | Ychan3 oo Y chan n o
....... -.'.-
Figure 1: Data format in a typical Time Series (.DAT) file P
'-
."_-.
AN
lﬁ\
N
@
SRS
RS
P U
NI VIOPE O S P OAEEC AT SR AL S St A et AT A et St e A L AT AP AL A A ANy
e . 3° b %) .-.-..\'.-.\...\.\\. ._.\.,\\..\\\\.\.. ~
'-‘ l“l N, . $ 3 } (s ").' " ' °a *) ﬂ"ﬂ S ’Q' "". ¥ A A S L Ly N Ty T

DFT1chani

DFT1tchan2 | DFTichan3 DFT2chant

DFT2chan2

real 1

imag 1 real 2 imag 2 see real p imag p
Figure 2: Data format in a typical Fourier Coefficient (FTR) file
B TIPSl FS AL g DO RS ICAI PEAL R S D ..."_ RARTORRE -".\-:._".‘-' .
"ﬁ v ::_“.":'."'.r"i'_ ARSI ":.'«’ 'I:I."..\-'-,-'-:." R

INTEGER BLOCK
ILABEL (1) = Block size # of 16 bit words/physical block 8
ILABEL(2) = Record Size ¢ of words per logical record
ILABEL(3) = # of records # of data records in file .
ILABEL(4) = Number of sequential transforms
ILABEL(5) = Number type Int=]1,Flt=2,CmplxI=1lloct,CF=120ct
ILABEL(6) = Bytes per number eg.: I=2,F=4,CI=4,6CF=8
ILABEL(7) = # of channels Must divide evenly into ILABEL (2)
ILABEL(8) = # of frequency bins
ILABEL(9) = # accumulations Normally 1
ILABEL(10)= X-axis Time=l, Frequency=2 K
ILABEL (1ll)= Y-axis Linear=l,Square=2,Log=4 -
ILABEL(12)= Seguence # User assigned, usually increments N
ILABEL(13)= Block scaling Power of 2 scaling factor]
ILABEL(14)= Window type None=1, Hanning=2, Hamming=3,Kaiser=4 -
ILABEL(15)= # of zeros o
ILABEL(16)= # of points of overlap
FLOATING-POINT BLOCK .
FLABEL(l) = Start frequency of first bin (Hz) ’
FLABEL (2) = Heterodyning freq. -ve means real heterodyned r
FLABEL (3) = Frequency resoclution (Hz) a
FLABEL (4) = Max. magnitude ;
FLABEL(S) = Spare »
FLABEL(6) = % overlap
FLABEL (7) = Time interval of a simgle FFT (hours)
FLABEL (8) = Spare 3
BYTE BLOCK ;
BLABEL (1) = Channel # »
BLABEL(2) = Gain (dB) .
BLABEL (3) = Channel #
BLABEL (4) = Gain (dB) fouy
* b
. -
. -~
BLABEL (127)= Channel # >
BLABEL (128)= Gain (dB) .
ASCH BLOCK >
ALABEL(l) = First character of ASCII label block -
. ‘>
ALABEL (320)= Last character of ASCII label block .
Table II: Header contents of a Fourier Coefficient (.FTR) file
'
o
4
A
------- - - e w -y A

N LTSI ARIT SRR

LSS

/7
B

N
< ":
- >

o

'

; INTEGER BLOCK S
ILABEL(l) = Block size # of 16 bit words/physical block
ILABEL(2) = Record Size 4 of words per logical reccrd)

‘ ILABEL(3) = # of records # of data records in file e
ILABEL(4) = Number of sequential spectral estimates .
ILABEL(5) = Number type Inte], Flte?2 CmpixI=llcct,CF=sl20ccCt RS
ILABEL(6) = Bytes per number eg.: I=2, Fe=4,Cl=4,CF=8 ;5
ILABEL(7) = # of channels v,
ILABEL(8) = # of freguency bins "
ILABEL(9) = # accumulations Normally 1
ILABEL(10)= X-axis Time=1, Frequency=2 ™~
ILABEL(1l)= Y-axis Linear=1, Square=2, Log=4
ILABEL(1l2)= Seguence # User assigned, usually increments S
ILABEL (13)= Spare
JLABEL(14)= Window type None=1, Hanning=2, Hamming=3,Kaiser=4 .
ILABEL(15)= ¢ of zeros s
ILABEL(16)= # of points of overlap N

FLOATING-POINT BLOCK ~ 8

FLABEL (1) = Center frequency of first bin (Hz) ’:?

FLABEL (2) = Heterodyning freq. -ve means real heterocdyned LN

FLABEL (3) = Frequency resolution (Hz) fa:
FLABEL (4) = Max. magnitude e
FLABEL(5) = Spare o
FLABEL(6) = Time interval between sequential frames (hrs.))

FLABEL(7) = % overlap

FLABEL(8) = Spare BN
BYTE BLOCK o0

o

BLABEL(l) = Channel # o
BTRABEL(2) = Normally C. gain already compensated fcr e

BLABEL’3) = Channel # PR

BLABEL(") = Normally 0

. »"
BLABEL(127)= Channel # s

BLABEL(128)= Normally 0 SRR
N

ASCIH BLOCK RN

ALABEL(1) = First character of ASCII label block T

;

e

ALABEL(320)= Last character of ASCII label block :f:

. :.]

Table IIl: Header contents of a Power Spectrum (.PWR) file -~

Y

PFT1chant | PFT1chan2 | PFT1chan3 coo PFT2chant | PFT2chan2 vee NN
~

RN

T o : . i RYAS
dB 1 dB 2 B 3 oo dBq s
----- .o = u:,
o
Figure 3: Data format in a typical Power Spectrum (.PWR) file e
SN
.

the contents of a typical ".PWR" file. Multiplexing of the data is similar to that found in
" FTR" files. Here, there are q power points grouped together representing the power in
each of q frequency bins for each channel. Power spectrum levels are typically stored as
decibels (dB). Once again, different formats for the data storage are acceptable as long as
thev conform to what is described in the file's header, but the format of Figure 3 is by far
the most common.

2.4 VAX and READRT File Formats

Files from TRANSFER are stored on VAX disks in one of two formats. The most
common of these is a binary direct access file. This format is compact and allows direct
access to any block in the file.

Data files are typically very large, often taking an entire 2400 foot reel of 9 track
magnetic tape, so transferming them to disk causes storage problems to appear quickly if
several people are doing analysis. For this reason the disk files should be stored in as
compact a form as possible.

Random access to any part of the data in a file is also important. A scientist doing
time series analysis may be interested in only certain segments of data in a large file, so
having to sequentially access each record to get to the desired one would be inefficient.
After analysis, display programs (such as PLTP'WR) also need random access to the data
so that any segment may be displaved rapidly and in any order. The format of the VAX
files permits this.

The other format is called READRT after the file transfer program which originally
used it. This format is used by some of the older analysis programs, and results in a
seguential unformatted file. It does not take a great deal more disk space than the VAX
format. but the advantages of random access to data are lost. It is not recommended that
this file format be used in future analysis programs.

3. PROGRAM IMPLEMENTATION

This section begins with a description of the program structure and the features
available in TRANSFER. Implementation details are then presented, and non-standard
practises are discussed more fully.

TRANSFER was written in FORTRAN 77, but is not easily transportable to
computers other than VAX and micro-VAX models made by Digital Equipment
Corporation due to its extensive use of system calls. (System calls use internals of the
\V'MS operating system directly and are not part of the FORTRAN 77 standard.) The
svstem calls were used to speed up tape and disk access, and to make use of some of the
powerful capabilities of the VAX-VMS operating system. On the bright side, however, the
program can be run on any of the VAX machines from DEC without modification.
TRANSFER can be used from any ANSII standard computer terminal, but works best with
a VT100/200 series terminal or emulator.

Subroutines from many sources were used in TRANSFER. Asynchronous disk
input/output routines from NRL (the Naval Research Laboratory) in Washington D.C.
proved to be very useful in this implementation [3]. Other useful routines from various
groups at DREA have been incorporated to avoid duplication of programming effort.
Subroutines obtained from outside sources will be noted as such in the following
discussion.

-

), SR

% % B W ¥

ML AL O Y

_"‘{AI ’ I

[

.....
.......

3.1 Program Structure

TRANSFER was written in a modular format in order to facilitate modifications and
additions. 'User-friendliness’ and simplicity of use were major considerations in program
design. Flexibility is a keyword for TRANSFER since many input file formats must be
accessible to VAX users, and the data in those files should be easy for the user to
manipulate. Simplicity of use and a high degree of flexibility are not always compatible,
but the attempt has been made to achieve both objectives with TRANSFER.

Even the most efficiently written program can be practically useless if it has a poor
user interface. For this reason, considerable effort was put into making the user interface
of TRANSFER easy to understand and use. The terminal input session has been separated
into related modules (for example, one module deals with defining the section of an input
file to be transferred into the output file). Each module is presented on a separate screen on
the user's terminal, and a heading appears at the top of the screen describing the purpose of
the module. Examples of this will be given in a later section.

Program structure is outlined in the flowchart of Figure 4. There are three basic
segments - input, processing, and output. Within these segments, subroutine structures
were used when possible. These are not noted in the chart, but more detail on some of
them will be given in a later section. The loop structure of the program is fairly simple at
the flowchart level but became rather difficult to implement because of the differences in
input file structures which had to be accommodated. Most of the options available to the
user are noted in the chart, and will be discussed in detail in the following sub-section.

3.2 Program Features

Input files for TRANSFER can be located either on magnetic tape or on disk. In
the case of tape, ".DAT", ".FTR" and ".PWR" files are accepted, while only VAX format
disk input files are accepted. One of the inconveniences of using magnetic tapes is the
requirement that the user must remember to allocate the tape unit and mount the tape (both
VMS commands). TRANSFER avoids this by the use of VMS system calls. When the
user specifies a tape unit (for example MSBO:) as part of an input filename, TRANSFER
tries to allocate that unit and then mount any tape found on it. If the unit is already assigned
or the tape cannot be mounted, the user is informed and program execution halts; otherwise
the operation is transparent.

The program will not stop executing if it encounters a parity error while reading
from a tape file. Parity errors on ".DAT" tape files are a distinct possibility due to the
manner in which the PDP-11 data collection programs operate. High speed is the priority
for the data collection programs, so no error checking is performed while writing to tape
(resulting in the possibility of parity errors). (Error checking uses valuable time and could
cause data to be lost in some cases.) When TRANSFER hits a parity error, it rewinds the
tape to the last good record of data and substitutes that for the corrupted data. This action
could bias the statistics of the output if many parity errors are encountered, but was deemed
to be more appropriate than destroying the time synchronization of the file by throwing
away data. The user is notified each time a tape parity error is encountered, and a running
count of the errors is presented.

TRANSFER allows wildcards to be used to specify a family of input files with
similar names (or parts of names) for input from either disk or tape. A short description of
wildcarding would be appropriate for the uninitiated - it hinges upon the use of a wildcard
character (in this case *'). Filenames are made up of a name and an extension separated
by a period (for example TEST.DAT). The family of files with the name TEST and any

..

¢

Py
......

~1
~ .

LR RARRAR
» @ ‘ *

AR

2

Y A.ﬁ’ -

4's,

. l '.. .‘l

.......

o . p B 0 - o f - < . .-- v-‘ "‘ - I-_ - ..-..‘ ... - -
e - A T NN NS AN ISR N NN AL NN

P

C e
_ ;

L Determine inpat fil
allow switches and wildcards

Input read in DREA header
Segment]
Deiermine output filename
and type (VAX or
READRT)

Get desired Starting time
and skip into file o that
ume.

Choose some or all of the
input ch Is for incluss
in the output file.

= v

._..__..1 Read data from input file
Processing

Segment L

Sort channels and remnove
those not o be ransferred.

— v

Write output data to file.

Output

Segment L

Update status on user's

Figure 4: General flowchart for TRANSFER

.....

Y
<0
9 '.:w-,
5
extension can be specified by typing TEST.*. Similarly all files with the extension ".DAT" 1-1'
can be specified by typing *.DAT. Typing TES*.DAT would specify all files having a o
name beginning with TES and having the extension ".DAT". When TRANSFER N,
encounters a wildcard in a filename, it finds all files which satisfy the input name set and
processes them in sequence. A user can specify a new set of transfer parameters for each 37
input file, or alternatively can set up parameters for only the first file and use those same o~
parameters for all of the other files. o
I\-'
Tape files present other possibilities as well. A user may wish to transfer a number .f\.-
of files from tape without having to specify their names (for example the second through -
the fifth files on the tape). This option is available to TRANSFER users through an input h
file switch (switches are only available when using input files on magnetic tape). A switch o
is used in the following manner: the user types the name of the tape unit upon which the N
reel is mounted, followed by a slash (/) and a switch parameter. For example, to transfer N
the first through the fifth files from a tape on unit MSBO:, the user would type 5]
MSBO0:/START=1/STOP=5 when prompted to enter an input filename. Here the START >
switch defines the file on tape with which to begin the transfer, and the STOP switch Rt
defines the number of the final file which is to be transferred. o]
A
There is only one other switch available; that is the /V (or verify) switch. When AN
this switch is included after an input tape filename (for example MSBO:TEST.DAT/V), PN
TRANSFER will ask the user for verification before skipping any file which it encounters LA
on the tape (If the first file found is the one the user specified, it is processed without .
question). This switch is useful if the user wishes to process the first file on a tape but o
doesn't know its name. In that case, when TRANSFER asks whether it should skip the o
file, the user need only give a negative reply and it will be processed. When /V is not used, I
the entire tape will be scanned for a filename match and no option for processing non- oA
matching files will be presented to the user. N
The default filename for files produced by TRANSFER is the same as the input -‘.f'u
filepame with the extension .TFR to indicate that it is output from TRANSEER. The user :-_.:‘
can supply a different filename and/or extension if desired. Output file format (VAX or “iny
READRT) is also selectable. NN,
n".‘
The case will often arise where only a small portion of an input data file will be .
used for analysis or display. For this reason, TRANSFER allows the user to choose a :
segment of the input file for transfer. A user-selected segment is always defined by its start
time. The ume at which recording for a file began is included in the DREA header. This g
time is displayed for the user, who can then specify the time at which the desired segment N

of data begins. TRANSFER will then skip into the file to the desired time (a rather) N
complex process. since the time and number of records to be skipped depend upon the type

of file being transferred®). When the file has been positioned to the desired start-time, NN
the user is given the option of specifying the segment length as a number of blocks (512 f_
bytes/block). a time duration, or the remainder of the file. Thus a user has great control LN
over the data transferred to the output disk file. Y
NN

'-"\

A

- . . . I3 . ’
"For example, .FTR and .PWR files have a time resolution which is determined by the NN
FFT length used in producing the file. For 2kHz samples and an 8K FFT, each set of s .
Fourier coefficients covers a 4 s ime interval. Due to the construction of the files, a time N
resolution of less than 4 s would be impossible in this case. In this situation, the actual N
start ume is the accessible time closest to (but not less than) that requested by the user. 7,

N

ey

._;\
)

r.s.
'.-.-.n-
B I
L e L e NN R T T SR S N

PP . ’ s, "fI“f\I\l'f"‘.f-.f"l'.-f.' AN \ A NN N A R R A S

. 10

Full control over the channels to be put into the output file is also a necessity.

. Channel numbers which were used in data recording are entered in the byte section of the
' DREA header and so are available during TRANSFER operation. The user can select any
) subset (or all) of the channels in the original input file for transfer into a VAX file. The
header of the new file thus created will be modified to include only channel numbers of

those channels presently in the file. This capability is useful in reducing the amount of data

stored on disk since non-acoustic channels or channels known to contain corrupted data

need not be transferred to disk.

During operation, TRANSFER provides feedback to a status screen on the user's
terminal. This screen gives information on the parameters set up for the file ransfer and on
the progress of the transfer.

. 3.3 Implementation Details

This section presents a more detailed look at the structure of TRANSFER. Each
. major segment of the program is shown in a flowchart indicating which operations are
carried out in the main program, and which of them are carried out in subroutines.

Cd

b Figure 5 shows the file selection segment of the program. Wildcarding and

4 switches are implemented in this segment. The user is first prompted for a filename, and
then the name is processed to check for switches. If switches are present, they are decoded

4 and the proper flags set for later processing. If a wildcard character appears, a flag is set

for tape processing, or a check of the appropriate directory is performed and all matching
names extracted for disk file processing.

. Once the input name has been processed, the first file which matches all criteria is
X found and opened (not necessarily an easy task when using magnetic tape). If the file
opening was successful, the DREA header is read into a buffer for use in setting up the
) transfer parameters. System calls are used for all of the magnetic tape operations in the
interests of speed. Disk operations are done using a set of subroutines obtained from the
Naval Research Laboratory. These allow asynchronous operations (ie. computations can
o carry on while data are being read from the input file) and are written in VAX-MACRO, so
- they offer a speed advantage over pure FORTRAN calls.

When a file has been properly opened, the user is prompted for an output filename.
A default (described in the preceding section) is presented, but this can be changed to
anything the user wants. If wildcard files are used, the user is given the option of
specifying transfer parameters separately for each file or of using the transfer parameters set
for the first file for all of the others. Output format (VAX or READRT) is then chosen, and
the output file is opened.

X2 PP LS

The flowchart shown in Figure 6 gives more detail of the structure in the processing

and data output sections of TRANSFER. The information contained in the DREA header is

g used heavily in this segment of the program. Parameters such as record size, the

multiplexing type and the number of channels are used to determine the the number of

blocks which must be skipped to get to the desired point in the input file. TRANSFER

: works with "frames"” of data. A "frame" is defined as the smallest amount of data which

can be read from the input file which gives a full set of input data for each channel in the

file. A full set of data can vary from a single time sample in a ".DAT" file to a number of

points defined by the FFT length used for processing in a ".FTR" or ".PWR" file. This

length is also determined by the type of multiplexing used in the file (see Figures 1, 2 and

3). As well, a "frame" defines the minimum time unit which can be accessed by
TRANSFER.

CAN K

R U R TR R T S SRRV AL e _~...-- e e T SRRIIPR IS
CAEPE S 4 e et T L, S
ey e f.- .\ AN AN

['v'www"-"& ‘ & >

The subroutine which is used to skip to the desired time in the input file and to
define the segment length for transfer makes extensive use of VMS system calls when tape
is being used as the input medium.. Because of the random access nature of VAX format
disk files, picking the correct starting time is as simple as addressing the proper block when
the input file is on disk. Some subroutines written by D. Peters and L. Bunch (both DREA
summer research assistants) were incorporated in this routine to improve the user interface.

Main Program Subroutines

C)
©

Determine input £il 4 Find and decode swiches
}(nllow switches and wildcards) used (if any)

Y If disk file, find all files
1 which satify criteria.
r— If tape file, set flag so
wildcard search is done.

N Find desired disk filc and
- d ine size. If non-zero
open it and read header.

Open desired Magtape file
&| (using switches) and read
header

Tape File?

Pl A

v

Form default output name
from input and allow user
to change if desired.

< s >

Y

*

*
AN

ey "",‘r A

(NN
' l‘ ’ l.

Let user set flag to re-
specify parameters for each
input file.

r

Let user set flag for VAX
or READRT format output

file.

Open output file with
the desired format

: v

I Other program modules

ERR

Figure 5: Details of File Selection Segment of TRANSFER

.
N

LI
R

)

AN

'S
[
L

12

Main Program Subroutines
Other program modules
Work out wansfer parsmeners
using information from the
DREA beader
T Dasplay start ame of file -
get sart ume & # of blocks
for the dets wansfer.
inlynilﬂeel-uh
& let user select those 1o
v be wansfemred.
Modify DREA header 10
reflet changes and write 0
outpwt file.
Read block of data from the
inpat file.

Write stamis mformation 10
weer's wrminal.

Close input and outpwt
files. Dump owtput buffer

if pastially full

C e

Figure 6: Details of processing in TRANSFER

P XA A

AP AR,

-

PXXERD

by

ST P]

Yatan 'y n Y

YRR RS

e X,

LI WE R IW]

Determining which channels are to be processed is simple enough if a single file is
being used as input. If a wildcard file set has been chosen, the process becomes more
difficult. Channels can be selected by "number”, that is by their standing in t..e order in
which they were put into the file (first, second, etc. in the multiplexing hierarchy), or by
the hvdrophone channe! which they represent (included in the byte label of the DREA
header). For example, the "first” channel recorded in a ".DAT" file may actually
correspond to the time series for hydrophone channel #20. The user has the option of
using the same parameters for each input file in a wildcard set, and so must decide whether
to key on channel numbers or hvdrophone numbers. While such a set is being processed,
1t 18 possible that channels will occur in a different order in some of the files. The headers
of the output files will reflect this, but it is often better to keyv on hvdrophone numbers in
such situavons. If a chosen hydrophone does not exist in one of the input files, the user is
notfied during execunon and allowed to change the selection.

Once channels have been selected, the DREA header is modified accordingly and
written into the output file. At this point the data transfer can begin. Enough blocks arc
read from the input file to give at least one "frame” of data. If some channels are not being
transferred. these are then removed from the input buffer. It is most efficient to write large
segments of data to disk, so input blocks are processed until a relatively large output buffer
1s filled or the input file is finished. The collected (perhaps reduced) data are then written to
the output disk file using the DBIO routines from NRL (for a VAX format file) or
FORTRAN write statements ‘for a READRT file).

Once a file is completed. input and output files are closed before proceeding. If
wildcard files have been selected. a check is made for further matches and if any are found.
the next matching file is processed. (The user may or may not be prompted for transfer
parameters for files after the first, depending on the option chosen.) If wildcard files are
not being processed, or no more wildcard matches are found, the user is asked if more files
are to be processed. At this point, the program can be exited or a new run started.

4. HOW TO USE THE PROGRAM

A sample terminal session will be presented in this section. “Snapshots” of the
user’s terminal screen will be used to illustrate the user interface and provide information
on running the program.

The executable version of TRANSFER is located in the directory
SAS:[FARRELL. TRANSFER] (soon to be moved to DREAPACS:[TRANSFER]). To
start the program, the user must type RUN SAS:[FARRELL.TRANSFER]TRANSFER.

The following scenario is presented as an example. A user has a mag-tape
tproduced by a PDP-11 data recording program) containing tme series data which are to be
transferred to the VAX. He believes the filename to be ZZZ003.DAT, but is unsure of the
extension. He does, however, know that the file begins at 10:33:41 and that data from 32
channels are recorded in the file. Ten seconds of data beginning at 10:33:50 and 4
channels out of 32 in the data file, namelv 2, i1, 18 and 23 are to be transferred.
TRANSFER 15 started using the command mentioned in the preceding paragraph, and then
an Input session begins.

In the following figures, a header categonzing the parameters to be input appears at
the top of each input screen (boldface tvpe). After every prompt, the default value is
presented in brackets To accept the default value, the user need onlv enter a carmage
return. Help can be obtained after any prompt by typing a 7" followed by a camage

WA

: _‘.:‘ -

h)

¢

NI
LT)
B

v,

AP f,'-": b’{.’. M
.53&33,. AP

A

return. User-entered responses appear in boldface type (after a prompt, so there should be
no confusion with the screen headers). Some prompts appear only under special
circumstances (when a wildcard file input set is being used, for exampie), and these are
shown in italics when they would not otherwise appear in the example being presented.

The first screen which appears once TRANSFER begins execution is shown in
Figure 7. Here the user sets up the input and output file specifications.

File Setup

Enter name for the input datafile. (MSB0:Q38334.DAT?)? 2
File name: UNIT or STRUCTURE:NAME.EXTENSION
Enter name for the input datafile. (MSB0:Q38334.DAT ?) ? MSAO:DUMMY.DATNJ

%MOUNT-I-WRITELOCK, volume is write locked
%MOUNT-I-MOUNTED, RT11A mounted on _MSAOQ:

Found file: ZZZ003.DAT
Want to pass over this file?(-1=y/O=only/1=no/2=rewind) (-1?) ? 14)

Default output file extension is T FR - Change it? (N?) ?

Enter the new default file extensi on. (TFR?) ?

Re-specify output parameters for e ach input file? (N?) ?

Enter a name for the Disk output file. (ZZZ003.TFR?) ?)

Should the output file be Vax (V) or READRT (R) format? (V?) ? V)

NOTE:) signifies a carriage return.

Figure 7: First Input Screen of TRANSFER

To demonstrate the use of the "help” feature, a "?" was entered in response to the
prompt asking for an input filename. The help field shows that the name format is
UNIT:NAME.EXTENSION, and the prompt is then repeated. The unit or directory must
be the first entry in the file specification - if no unit or directory is specified, the current
directory on disk is used as a default.. In the example, the tape containing the data is
mounted on unit MSAQ:. The user doesn't know the name of the file to be transferred, so a
dummy name has been entered along with the /V switch (this means that the program will
ask before skipping any file). Messages from the system following the filename entry
show that the tape has been successfully mounted on the requested unit and that the tape is
write locked (ie no data can be written to it - the safest policy with data tapes).

The /V switch causes the name of the first file found (ZZZ003.DAT) to be
displayed. The user then has several options. If a -1 is entered, the file will be skipped
and the search for DUMMY .DAT will continue. Entering 0 will cause ZZZ003.DAT to be
skipped and the next file found to be processed. Entering 1 will cause ZZZ003.DAT to be
chosen as the input file, and entering 2 will rewind the tape and begin searching from the
start of the tape again. The default is to skip the file, but in this case. the user has chosen to
process it by entering a 1.

Next, a name for the output disk file must be specified. The default filename is the
same as the input filename with the extension .TFR. and in this case, the user has chosen to

VASAYS Y

'
PR

Y4y
’ o .l

Ly

'S Is“'.‘\.) "' .y

L SO S 'a_"' Lt
POV L ’ ANy

\\\\\\\

go with the default by entering only a carriage return. (If wildcard input filespecs had been
used, the user would have been prompted to defermine if the .TFR file extension should be
used for all output files. At that point, a new extension could have been specified which
would appear on all output files from the wildcard set. The option to re-specify output
parameters for each input file would also have been presented if a wildcard set had been
chosen.) Finally, the output file type must be chosen. Here, the user has chosen VAX
format (described earlier) and entered a V followed by a carriage return (a carriage return
would have been enough since V is the default, but entering V does no harm).

The next screen to appear deals with selecting a file segment to be transferred and is
shown in Figure 8. At the top of the screen, the start time of the chosen file is displaved.
The user is then given the option to start the transfer at a later time 1in the file (default is to
start at the beginning). Here, the user asks to start the transfer at 10:33:50. TRANSFER
skips into the file to the desired point (or the nearest accessible time greater than that
requested - constrained by the input file format). The user is notified of the start time
which the program is actually using and of the number of blocks being skipped. The next
prompt allows the user to set the amount of data to be transferred. The user has three
options; n (where n is some number) will transfer n 512 byte blocks (to the nearest
“frame") into the output file; -1 will ransfer all data from the specified starting position
(time) to the end of the input file into the output file; and -2 will allow the user to specify a
time interval for transfer. In this example, the user has chosen to transfer by ime interval.
Time is specified in the HH:MM:SS format, and in the example, the user has asked for 10
seconds worth of data to be put into the output file. (If a wildcard file set had been
sperified for input. the user would, at this time, be asked to decide whether to transfer the
same channel set or hvdrophone set for each input-output file pair. This choice doesn't
deal with "data segment specification”, but was placed on this screen due to program
structure constraints. The prompt appears in italics as wildcards are not being used here.)

Data Segment Specification
This file starts at 10:33:41

Do vou want 1o begin processing at some other ime (N?) 7 'Y 4)

Enter the ime at which vou wish to start (10:33:417) ? 10:33:50 4)

Actual start ume will be 10:33:50
144 physical blocks will be skipped.

Enter n to X-fer n blocks.- | for all.-2 to specify ume (-17) ? .2 4)
Enter the length of time of the transfer (00:01:007) 2 00:00:10 >

Select the same H P Y) or channels (N) from each file ” (Y?) ?

Figure 8: Second Input Screen for TRANSFER

Once file segment has been defined. a channel set-up screen appears (shown in
Figure 9) The total number of channels 1n the input file ancluding non-acoustic channels)
is displaved. followed by a list of the acoustic channels and their comresponding
hydrophone numbers (from the byvte pant of the DREA headery From these. the user

............

n

XA A

‘-'\v'
-'f#’

AN

. gt
»

.y s o
.
"~i‘.. .-f [

¥

L

P4 ve e d Il
ALY '-. '\ [AN ..' -'- "_:';

VAN e
DAWAD S h

PP AT
Y Yy

.4 V4
)

3

A3

Shh o St AR
RXARANEN Yoo

N [
ve

.'...-u

16

selects which channels are to be transferred into the output file. The number of channels to
be transferred is specified first (-1 will transfer all channels - including non-acoustic ones - y
to the output file), and then the channels (not hydrophone numbers) are selected. The \
selected channels can be separated by spaces or commas. This concludes the input session
as TRANSFER has all the parameters needed for execution.

Channel Setup 3
There are 32 channels in the input file. ¢

The following are acoustic channels:

1,2, 3,4,5,6,7, 8, 9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24 25,26,
27,28,29,30,31,32

The corresponding H/P numbers are:

1,2, 3,4,5 6,7, 8, 910,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,
27,28,29,30,31,32

How many channels do you want to process? (-1 for all) (-1 ?) 74 4)

Enter the channels you wish to study : 2 11 18 23 <

Figure 9: Third Input Screen for TRANSFER

b s 9 -

Once data transfer has begun, program status is continuously updated on the
terminal screen. The status screen (shown in Figure 10) can be divided into three
segments. (Note that parameters which depend on choices the user makes during the input
phase of the program appear in boldface type in the Figure.) The first of these segments \
displays the current time and date and is updated as the program executes. 3

The second segment is static and gives information on the input and output files. !
Part of the ASCII label is shown to give some indication of the origins of the file. Below -.
this label, the names and start times for the input and output files are displayed. The
number of frames requested for transfer to the output file is also shown. If all blocks from .
the specified start time to the end of the input file are to be transferred, the number of '.'»
frames to be transferred is shown as "TO EOF which stands for To End Of File (Note that
this is shown in the sample screen of Figure 10 - which came from a different run of
TRANSFER with the same input file). The total number (including non-acoustic) of
channels in the input file and the number being transferred are shown, along with their
channel numbers and hydrophone numbers (acoustic channels).

The third segment is dynamic and updates as the program executes. The number of
frames processed is shown along with the average time taken to sort and transfer each X
frame to the output file. In the sample screen shown, 100 blocks have been processed, and
the average time (clock time) per frame overall has been .02 seconds. A running count of
parity errors during tape reads, is given below the "average time per frame" block if any
€ITOrS OCCur.

When all data have been transferred to the output file, the user can request that
another file be transferred. In this case, the program starts again with the first input screen.
If a wildcard set was specified as input and the same transfer parameters were to be used
for each file, the next transfer will proceed automatically. If transfer parameters were to be

specified for each file in a wildcard set, the user goes through all input screens except the
first for each file. If a tape file was used as input, the tape will be dismounted and rewound
automatically when execution of the program finishes.

FILE TRANSFER STATISTICS
4-DEC-1986 11:50:00

ASCH Label; 32 CHANNELS REAL
Input File: MSAQ:ZZZ003.DAT Output File: ZZZ003.TFR
Stantsat: 10:33:41 Starts at: 10:33:50

Number of frames requested: TOEOF

Channel usage: 4 chosen out of 32 total
Channels: 2,11,18,23
Acoustic Channels: 2,11,18,23

Number of Blocks processed: 160
Average time per frame: .02 sec

Figure 10: Program Status Screen

Appendix A gives a list of all prompts which can appear during transfer execution,
along with the 'help’ string for each. As well, full descriptions of prompts which have not
been discussed fully in the text are given. Messages which appear on the screen when an
event requiring user attention occurs during TRANSFER execution are also listed and
expiained in the Appendix.

For completeness, a listing of TRANSFER and its major subroutines is included in
Appendix B. Some of the VMS system calls are unavoidably confusing; however the
programs are fully commented, so no further description will be given in the main body of
this document.

§ FUTURE DEVELOPMENTS

Currently, output files cannot be written to magnetic tape. This feature would be
userul, since no tool for reducing the size of data files exists on the PDP-11s (PDP-11
users have the same need for this functionality as VAX users). Squeezing several ".DAT"
files onto a single mag-tape would be another use for a tape-output feature (no tool exists
for do.ng this on the VAXen at present). Such a modification requires a module for PDP-

! format tape output (currently being developed by G. Heard at DREA). Once the module
1s oFtined, the upgrade should take relatively little time.

Transfer of other file formats would also be desirable (for example READRT to
VAN conversion), and will be implemented if enough user interest is shown. A generic

AT R

R

R S T G A LTS IS

''''''''

Al R
R e N AN R A TS S R S A
I NN I A A A A N AN AR AORGR AO SN A A

17

~ v > =l
PX N

LA
e

-
-

o

v

AT

R)

o RS 5§ .‘-....

g(//’-‘.

« c\-.

LT R A0 IS
LEALARY

A
%

ORI
.J.:‘\' [N l: []

LI &

LA R
:,"5'.5!.»»'.

*a)
N

! 'f.:_

l.l-l
PP

v

Y

s, PP LS
L YL PR W NS
> XA

& % 'i:"l:

hJ

o 0 B}
veee e

-
D)
v

Yt A e gts i te Rta Mle Sl Bl a0 ker Rikbintafo Rl Bl Lol Aef ol

18

transfer option (block-for-block copy of an input mag-tape file to VAX disk) is being R
developed and should prove useful for non-DREA generated tapes. >

6 CONCLUSIONS AND ACKNOWLEDGEMENTS

program allows transfer of PDP-11 format magnetic tape files (and VAX disk files) to
VAX disk files which are formatted properly for use by the Surveillance Acoustics section
suite of signal processing and display programs. Data manipulation tools which allow
selected channels and data segments to be transferred are available within the program. ¢
making it a versatile tool for pre-analvsis data preparation.

r
)
This note has described a robust file transfer program for the VAX computer. The E
L4

<

>,
Thanks to Ed Chaulk, Vance Crowe, Phil Staal and many others who made useful s
suggestions during TRANSFER's creation. Almost all of their suggestions have been 2
incorporated in the working program. Asynchronous disk input/output routines written by
J. Padgett of NRL and obtained with the help of Art Collier at DREA proved to be E
extremely useful, increasing the speed of TRANSFER significantly. Subroutines written
by Vance Crowe, Laurie Bunch and Doug Peters were also used, making my programming
job a great deal easier. Figures 1, 2 and 3 were produced by Phil Staal. Thanks should
also go to Bruce Skinner for his aid with VAX VMS system calls.

(15

19
References

Caldwell D.A.,, "A Standard for the DREA Data Descriptor Biock", D.R.E.A.
Technical Communication 87/302 , Dartrnouth, Nova Scotia, December 1986.

Farrell J.B., "SAFTR - A Program for Producing Fourier Coefficient Files on the
VAX Computer”, D.R.E.A. Technical Communication 87/ (DRAFT) , Dartmouth,
Nova Scotia, February 1987.

Hurdle B.B., "Private Communication", Naval Research Laboratory, Washington,
D.C., February, 1986.

JORUAI
NG ?'J-¥a

)

s

2

'{‘. e | 1{1

.

'y

1

v g

.,,
5A AN

A
LAy 8

B A

4

G % s e v

P

P)

4 "

.'A’ "

‘e’
a_8_®

- e

Bl i a4

20

APPENDIX A

A - DETAILS OF USER PROMPTS - INTRODUCTION

Appendix A1 lists all of the prompts which can appear on the user's screen during
TRANSFER execution and gives a brief description of each. The help available for each
prompt is also listed. Appendix A2 lists messages which appear on the screen when an
event occurs during TRANSFER execution which requires attention or should be noted by

the user.

Al - Alphabetical Listing of Prompts

PROMPT:

HELP:

DETAILLS:

PROMPT:

HELP:

DETAILS:

PROMPT:

HELP:

DETAILS:

PROMPT:

HELP:

DETAiLS:
PROMPT:

HELP:

DETAILS:

PROMPT:

HELP:

DETAILS:

PROMPT:

HELP:

DETAILS:

PROMPT:
HELP:
DETAILS:

Default output file extension is .TFR - change it?

All output files will have the specified extension.

Allows the user to change the default file extension which will be used
when processing wildcard input file sets. If parameters are not being
changed for each file in the set, output filenames will be the same as the
input filenames, but with the default extension substituted for the original.

Do you want to begin precessing at some other time?

Default is to start at the time shown.

Appears when the start time of the input file is displayed. The user can start
the output file at the same time, or modify the start time for output by
responding "Y" to this prompt.

Do you want to process another file?

Default is to exit the program.

Allows processing to continue when the current input file (or set) has been
completed.

Enter a name for the disk output file.
Default will be the same as the input name with the extension .TFR.
Defines a file where the output will be dumped.

Enter n to X-fer n blocks,-1 for all,-2 to specify time.

-2 will let you enter a time interval for the transfer.

Defines the segment of data to be transferred. Data will start at the specified
start time and have an extent specified by the response to this prompt.

Enter name for the input data file.

File name: UNIT or STRUCTURE:NAME EXTENSION

Defines a file (can be a wildcard file set and have switches included in the
filename) where the input data are to be found.

Enter the channels you wish to study.

No help appears for this prompt.

Allows input of a vector of channel #s which are to be transferred. This
prompt appears after the number of channels to transfer has been established
and a list of the available channels has been displayed.

Enter the length of time of the transfer.

Format is HH:MM:SS.

The user must enter the time extent of the data segment to be transferred
from the input to the output file.

APPENDIX A

PR R R

-5

¥ ¥ W

T e et Pl .,

- an

PROMPT:

HELP:

DETAILLS:

PROMPT:

HELP:

DETAILS:

PROMPT:

HELP:

DETAILLS:
PROMPT:

: HELP:

DETAILLS:

PROMPT:

HELP:

DETAILS:

PROMPT:

HELP:

DETAILLS:

PROMPT:

HELP:

DETAILS:
PROMPT:

HELP:

DETAILS:

PROMPT:

HELP:

DETAILS:

PP LU P PP P, P
L 94 1.&-.,-@-. DA

-. .'I'S ~ . » R (> \‘

APPENDIX A

Enter the new default file extension.

Typically three letters long (leave out the ".").

Allows a new default file extension to be set. Appears after the prompt
allowing the user to decide whether or not to keep the .TFR extension.

Enter the time at which you wish to start.

Format is HH:MM:SS.

Set a new start time for the output file. The prompt appears after the user
requests a transfer start time other than the start time of the input file.

How many channels do you want to process? (-1 for all)
Enter the number of channels to process.
Lets the user select from the channels available in the input file.

Proceed using the subset of requested phones found?

Re-specify H/P or skip this file if the reply is N.

Prompt appears when the required H/P set is not found in a wildcard file.
Execution can continue with the subset of H/P found in the file.
Alternatively, the user can modify the H/P set or skip the file and proceed to
the next one in the set.

Re-specify output parameters for each input file?

Else use the default output file name & specs.

An option used for wildcard input file sets. If the user replies "N" the
parameters entered for the first file in the set will be used for all of the
others, and the output filenames will be the input names with the default
extension. If the user replies "Y" all prompts will appear for each input file
in the set.

Select the same H/P (Y) or channels (N) from each file?

Default will select the same H/P from each input file.

Used in conjunction with wildcard file sets when transfer parameters are not
being changed for each file in the set. Either H/P or channels will be kept
the same for each output file.

Should the output be VAX (V) or READRT (R) format?
(V) format compatible with DISPVAX, SASPEC, etc.
Sets the format of the output data file.

Skip to the next file in the input set?

Otherwise use this file with reduced # of chans.

Prompt appears (when channels are being kept the same in a wildcard set)
when channels differ from those expected in the file set. The user can
procefci:ld with a transfer of the reduced number of channels, or skip to the
next file.

Type 1 to take closest record start, 2 to re-specify time.

Closest may be earlier or later than the chosen time.

Appears when the user has requested the transfer of a number of blocks
which doesn't result in an integral number of data frames in the output file.

,\,\('D(. <o, -'\-'..-f'. L, L -" o, - L J'_‘-".~'_ LA A \u" -'\". L o L R
A S A AR A ARG A N A A A A AR A ARG NN A AN AN A AT AN
y > LSRR S N ._\!-. !l'i:f." !\'-:\:-.r\-:\ \:-.3. RAKSARE L SN CRALINAN S

........
......

frfflfi‘.ﬁa‘
W N

PROMPT:
DETAILLS:

APPENDIX A

Want to pass over this file?(- 1=y/O=only/1=no/2=rewind)

-1=pass file&look at next/O=correct/1=use file/2=rewind.

Used in conjunction with the /V switch for skipping files on mag-tape. The
user can: {-1) continue searching for an exact match for the input filename,
(0) skip to the next file and process it, (1) process the file found or (2)
rewind the tape and then continue the search.

A2 - User Messages From TRANSFER (Grouped By Subroutine)

MESSAGE:

SOURCE:
CAUSE:

MESSAGE:

SOURCE:
CALUSE:

MESSAGE:

SOURCE:
CALUSE:

MESSAGE:

SOURCE:
CAUSE:

MESSAGE:

SOURCE:
CALUSE:

MESSAGE:

SOURCE:
CAUSE:

MESSAGE:

SOURCE:
CAUSE:

MESSAGE:

SOURCE:
CAUSE:

A2.1 Messages from TRANSFER main program

Stop *** fatal -- input file is empty.

TRANSFER main program.

Appears when the “iser mies to open an input disk file which contains no
data.

Dismounting Tape.
TRANSFER main program.
Tape input was completed or end of tape was reached.

A2.2 Messages from subroutine Check

Error in system call at position ***.
Subroutine CHECK.
An error condition resulted during a VMS system call.

A2.3 Messages from subroutine MTFILE

Stop *** All files processed.
Subroutine MTFILE.
All files from a mag-tape /START /STOP set have been processed.

End of tape encountered - rewinding.
Subroutine MTFILE.
Reached the end of a mag-tape being used for input.

Skipping to next file.

Subroutine MTFILE.

A file with a name different than the input filename was found and 1s being
skxppcgd (either because the user requested it or because the /V switch was
not used).

File **** found.
Subroutine MTFILE.
Found a file which matches the input filespec.

Found file ****

Subroutine MTFILE.

Appears for every file found when the /V switch is used in the input
filespec.

APPENDIX A
' ' "-'.- - - u.v’t ’l"."v..‘ - -‘.\..-"'- -,-._-._-.’-, ,
-.\\ N LAY YL L A b LA SA A -
i ." Lt fffr) o f-Pi’Ivf_fIIIII-F‘II)('I.'J\‘I\\IJd‘f

"y & WV

« % s W W _B_°
N

BT Y
.......

’.;.\js

APPENDIX A
MESSAGE: Assume you want to skip to the next file.
SOURCE: Subroutine MTFILE. _
CAUSE: Appears when the user responds ambiguously to the prompt asking whether
or not to skip the file found.
A2.4 Messages from subroutine GETTAP
MESSAGE: Tape is already mounted - assuming you did it.
SOURCE: Subroutine GETTAP.
CAUSE: A mount request has been issued for a tape unit that was already mounted.
MESSAGE: Error - device probably allocated to another user.
SOURCE: Subroutne GETTAP.
CAUSE: Failure in a request to allocate a tape unit to the TRANSFER job.
MESSAGE: Device already allocated to you.
SOURCE: Subroutine GETTAP.
CALUSE: Routine tried to allocate a tape unit already allocated to the user.
A2.5 Messages from subroutine Channel_Select
MESSAGE: Channel Select - no acoustic data found in file.
SOURCE: Subroutine Channel_Select.
CALSE: The byte label of the DREA header indicated that there were no acoustic
channels present in the file.
MESSAGE: Working on file ***
SOURCE: Subroutine Channel_Select.
CAUSE: Informs the user of the current file being processed in a wildcard file set.
MESSAGE: The H/P available differ from the originals.
SOURCE: Subroutine Channel_Select.
CAUSE: One or more of the requested hydrophone channels is not present in the
wildcard file being processed.
MESSAGE: You are keying on channels rather than phones, so | am proceeding.
SOURCE: Subroutine Channel_select.
CALUSE: Hydrophone numbers have changed in a wildcard file-set but the user is
keying on channels rather than phones, so this serves as a warning.
MESSAGE: You asked for a channel not found in the input file.
SOURCE: Subroutne Channel_Select.
CALUSE: User 1s keving on channels, and one (or more) of the required ones was not
found in the current wildcard input file.
MESSAGE: Proceeding with reduced # of channels.
SOURCE: Subroutine Channel_Select.
CALUSE: User has chosen to process a file, even though it doesn't contain all of the
files onginally asked for.
MESSAGE: There are ## channels in the input file.
SOURCE: Subroutine Channel_Select.
CALSE: Informs the user of the number of channels available.
APPENDIX A
g N R N N T

2
'w

c'&! ;

.,....
PRRARS
hOO

IO
IR '-,'-."sc

Thy Y
4

- A

‘."l

MESSAGE:

SOURCE:
CAUSE:

MESSAGE:

SOURCE:
CAUSE:

MESSAGE:

SOURCE:
CAUSE:

MESSAGE:

SOURCE:
CAUSE:

MESSAGE:

SOURCE:
CAUSE:

MESSAGE:

SOURCE:
CAUSE:

MESSAGE:

SOURCE:
CAUSE:

MESSAGE:

SOURCE:
CAUSE:

MESSAGE:

SOURCE:
CAUSE:

MESSAGE:

SOURCE:
CAUSE:

MESSAGE:

SOURCE:
CAUSE:

APPENDIX A

The following are acoustic channels.
Subroutine Channel_Select. -
Informs the user of the acoustic channels in the input file.

The corresponding H/P numbers are:

Subroutine Channel_Select.

Informs the user of hydrophone numbers corresponding to channel
numbers.

Channel Select - sorry no default.
Subroutine Channel_Select.
The user selected no channels for transfer to the output file.

A2.6 Messages from subroutine Skipper

This file starts at : HH:MM:SS.
Subroutine Skipper.
Informs the user of the start time of the current input file.

Actual start time will be HH:MM:SS.

Subroutine Skipper.

Informs the user of the actual start ime of the output data file. May be
different from the requested time due to data frame size in the input file.

Disk start block will be: ###.
Subroutine Skipper.
Informs the user of the start block number of the input disk transfer.

physical blocks will be skipped.
Subroutine Skipper.
Informs the user of the blocks to be skipped on tape.

You specified a zero-length transfer - try again. "
Subroutine Skipper.
User specified a transfer time less than the frame time of the input file.

WARNING - you are trying to transfer 0 blocks - try again.
Subroutine Skipper.

User specified a number of blocks less than the number of blocks in a data
frame.

Transfer time must be at least: HH:MM:SS.
Subroutine Skipper.
Informs the user of the minimum time which can be specified for a transfer.

You are not using an integral number of records. g
Subroutine Skipper.

User tried to transfer data which did not fit into an integral number of

frames.

P I R BT N A S .'.- IR I R IO IO R TR SRR e Tt AT
s T e AT e AR T T e e el
AN e e T \'\.”'\"\'x’\ T v I T N AR

MESSAGE:

SOURCE:
CAUSE:

MESSAGE:

SOURCE:
CAUSE:

MESSAGE:

SOURCE:
CAUSE:

MESSAGE:

SOURCE:
CAUSE:

MESSAGE:

SOURCE:
CAUSE:

MESSAGE:

SOURCE:
CAUSE:

MESSAGE:

SOURCE:
CAUSE:

APPENDIX A

[)
n

A2.7 Messages from subroutine Disk_Wildcard

No more files match the input spec.
Subroutine Disk_Wildcard.
All files matching a wildcard specification have been found.

A2.8 Messages from subroutine Reader

Error reading record!! Error count = ##.
Subroutine Reader.
Routine encountered a parity error on tape and successfully passed it.

End of file encountered.
Subroutine Reader.
End of an input file was encountered during a read.

Saving ### frames and exiting.

Subroutine Reader.

Informs the user how many data frames are being stored after an end of
file was encountered during a read.

Read puts us past EOF - blocks to read ###.
Subroutine Reader.
Disk read would go past EOF.

New blocks to read - ###.

Subroutine Reader.

Informs user of the number of blocks which will be read from a disk file
when a full read would go past the EOF.

Error encountered on disk read - saving what I can and exiting.

Subroutine Reader.
Informs the user that an error occurred during a disk read.

APPENDIX A

‘1‘ S v S W - -
PJ o {’\fnb l -’.

LS
o

il

. ';-'

AN

A4
|]

N YT ¥ ¥
’ '.-.I-,'.'.’%'S{\"

« 7

SN Te s et .o PRI R T e

26

APPENDIX B

B - PROGRAM LISTING - INTRODUCTION

This Appendix contains listings of the TRANSFER program and its major
subroutines. The casual user is unlikely to find these listings useful, however those
writing programs for accessing PDP-11 tape files should be able to glean some
information. The progra.ns are commented fully, and most operations other than svstem
calls should be easy to interpret. Print size has been reduced to conserve space.

B1 - Listing of the TRANSFER Main Program

L R L T T R T T P Py Py

< PROGRAM NAME: TRANSFER .

e LR L N S Ry TS R R Y TN ¥ ¥

Written by:
Josepnh B, Farreil
OREA
21 Jan. l190¢

latest revision: 7 Aug. 1986

Tris program accepts a f!lename,opens tnat flie cr ar RT-..

mag tape (cr VAX disk fl.e in stancarc 'PUPIIS' formai; and reads ir tne
CREA standard heacer. The user car ther choose some or a.. 2! the i(nput
channe.s tC be wriller intc an output disk fl.e (ir standara ‘PDPI1S°
format cr {r “he oid 'READRT' format;. The tape uni: does no: neec tc
De mounted Or a..ocated before Lhe program is run.

Trhe program was writtern iC rep.ace anc expand or tre functiona.ity of
the READRT program writter. by Xer. Hahrn of ASP.

SUBROUTINE CALLS:
1) ERASE_SCREEN= Clears tne screer Of the user's tarmina.
2) VTMESS = Puts a message or the user's termina.

3) INPUTS = Reads & string fror user's termina.
4) SYSSASSIGN = Suproutine to assigr a channe.l.
S5) LIBSSTOP « STOPS Prograr exacuilon or. error.
6) SYSSQIOW = Queuec input-outputl from a channe..
?7) CHECK = Checks the status buller after » QIO
8 GETYN = Gets a Yes or No response {ror the user.
9) DBOPENI(T) = Opers (Creates) a disx file.
iC) DBSIIE = Determines the site of a disk Ziie.
1i) CBREAC = Reaas data from a disk file.
L2) DBWAIT = Waits for disk operazior to complete.
13 DECT = Turns of error reporting from DBMI routines.

L4) SKIFPER Skips intc a flie tc a specifiec Iime.
-3 hanne. se.ect = Chooses channels to process.

16, Write header = Writes nheader o the output flie.

7y INpUTY = Reads an irteger fror the user.

18) DBWRITE = Writes data tc a Gisx fi.e.

19) DBCLOSE = Cioses disk [l es.

20} SET_CURSOR = Moves “he cursor to a specified .ocatiorn.

D R R R R R R R L L R PO

MAIN CODE

LA R R AR R R R e R T Ly

PROGRAM TRANSFER

——— Parameter and (rnterna. variable deciarations.

DA NO0OINO0000NNNANNO0aONON0O0MINO0000

A

oy

IMPLICIT INTEGER*4 (a-z)
INCLUDE ' (Sdmtdel)

PARAMETER MSGeC
PARAMETER (SSSENDOFTAPE="'878'X)

BYTE c.abe. (128 ‘Byte part of DRELA heacer
BYTE siore _D.abei (128) ‘Temp. store for by'e labe.
BYTE EOT_search(10) !Checks for erd of tape
BYTE output_data (iC240) 'Output data

BYTE raw_byte_data(50C00) ‘Raw {nput data

8YTE raw_header (512} ‘kaw heacer data

CHARACTE a.ape.*32C ‘ASTII part of DREA header
CHARAITELR Gela.it _exiension®64 Defauit fi.e extension
THARAZTER char®é !Used in mag tape channe.
CHARACTER de itel ‘User input cdefau.t
“HARACZTER 2ilev64 ‘input Ziiename

CHARATTER new: .me*# 'Start time for processi:ng
CHARAZTER c.dtime*8 ‘Start time of input data
THARACTER ofiie*64 ‘Output fljiename

APPENDIX B

P A

h L

Ty

8 %

[T A 4 >

‘St

0
o)

APPENDIX B 22

CHARACTER olype

SHARACTER Lape_mark (.l:
CHARAZTER tape_name ' 0
THAAATTER wii.e*64
INTEGER®S b.ocks_Zrom_inpul
INTEGER® L bytes_per_t” “cx
INTEGER®2 fi.e 2

INTEGER"Q nyarophones (128’
INTEGER®. l.ape. (16;
INTEGER*Z LNpUt channe.
INTEGER®. ramper C!_cnanne.s
INTEGER®. number_sorted
NTEGE: process (128!
INTES. d se.ector_mass (128,
INTESER . sifv_f.aQ
INTESER® L s ars !

INTESER®. szop _Ti.e
INTESER". Text_icstié
NTESER"4 £.oCKks_per reccra
INTESER4 c.ocas ¢ T
INTESER 4 c.cers o _wrlte

oytes_Ic_reaa
nNe.S_tC_process

aisx
d.sx_channe. out
lrame s e
lrames_‘c_reac

PR - 3
INTEQER®S lerror
INTEGER"¢ time
INTEGER®S ai.sx_ingpit _channe.
INTEGER®4 camp
INTEGER®4 frames sicrec
INTEGER®S srec
INTEGERS masx 0
INTEGER® S np.ocas
INTEGER™S or.ocAs
INTESER*4 oflise
INTEGER®S SYsSQaiEmo.
INTEGER®S Lp.ocks
INTESER®¢ tota. L.OCKS
LDGITAL another
LOGITAL enc_c! tape
LOGITAL ex:t
L0G2 correct _I..e
oGl et yr
e #34 oJl SpeC
pEe ~id s«
pte 3¢ ver.ty
LoGT w..dca
AZAL D.0CK_tlve
RIAL L.esr
REAL C.a8w
REAL LikEY
REAL f.abDe. il
REAL Iraci.cra. _L.ocks
REAL frame [ractior
REAL frame 2 1me
REAL ~rec
REAL recoras_pe: read
REAL samp.es _per _.-~pit b.ock
REAL cime ‘nterva. ’

13 searct. cape mMar«

LY. raw ~esder (3}

4 raw neader &%
ej..va.er @ a.are. . raw neader

TOMMMC’
COMMo ®
TOMMO *

L9z

secu:Ive cranne. pytes

‘Fisg for output fil.e type
Checks tape marks

Heager {.lerame

‘Worxing fi.ename

B.Ocks to read from {.,e
.Deterxinec py input f1i.e
Input fli.etype (.DAT, etc.:
Hyarophone numbars

Integer part ©f DREA header
Input cnanne. for tape

¢ channe.s ir input fi.e
'Number of s.esments sorted
Channe.s tc be processec
"For picking bytes

f.a¢ for cha~he. remova.
Start for numberec tape fi.es
‘Stogp for numberec aps {..es
Status buffer

‘Determinec by lnput fli
‘4 Diocks for .nput reac
§ D.i-cks for odtputl write
¢ Dytes read before som
‘# thanne.s C Drocess

‘F.ag for aisx fi.e input
1Oulput channe.

4 Ciks Or recoros per
input frames to reac
B.ock for disc re
Error from dlsk reads

lrame

input channe. for disck
increment fOI scriing channe.s
counter for frames storec
counter for {rames processec

Number of C.0Cks .& input fl.e
celau.l ¢ o! OUIpPUl D.OCKS
Jsed {or chanhe. sor:ing
clamountis a lape

frocess arcther {..e.

Enc ¢! tape :ndicater
F.a¢ for oucipust extens.or
L.e fiag

response furct.or
Re-gc outpur {i.especs
Snip fiie L.0G

vear:fy f..e5 ¢ be sk.ppec
W..gcarc .r !..ename

D.ozks ¢ reac
P.ocxs 10 write
Ty siorage
ng par. of

CREA nNeader

Jeerr.ned Dy lrput fl.e

APPENDIX B

\(\]

.
’

P N
Sla

-

A T A i Bliac e She She 2 e SSabint AiadiSdnidel
. default_extensior = ‘TFR’
A -
< B . [-
l-- l.ear the screer and
call _screan(l,)
ca.. set_cuirsoril,l)
Ca.. Vimess/'re’,'C', " ‘'VT100/20C SPECIFIC
z ¢ & name for the input
L ca..
Cl..
3 termine w ! input flie spec.ficatiorn.
¢ ca.. swiiches: :fiie verify, star: _f'ie,stop_file)
Te-- A3c a .DAT extensicrn (! and the I..ename was no-
--- spec.fieC &3 a wl.Qcarc.
w..0carg o .FALSE.
L, tfiinaex il e, "’ .ne.liw. 0Ccare = _TRUE.
. . V.eg.lither
| .**’)rner
i en2itfijey; ' DAT"®
dcarg = . TRUE
7 .
) B
.
v -- s.sx = 1 3c “he c.sxflle
--- & Taglape cper anc reac.
. P 1 3
.
- -
-
Lfiwl.acarc ther
Ca.. Iisv wl.OdCarg lll.e,ilime,wll.e:
e.se
wf.. e l:.@% (!l = (fl.e’, en2i:fl e
Ll . A
ancpe” ClBs_ TPl cranne. wll.e
! olerrs. <

..e ope-

; .- The Inp.t "
R .
. €., Nc.cTKS
) -

_ I
. -
arread t3lsk apyt
SDwalT ZLSK L TpuT
_ - ’
- - - e muTe Late c e S Traje ir .a‘er mod.l.ca%.or.
- Z.ape K
.
-
fFa: 1 3Iveer LRGN
Tte llrst.
L3
' Lf LT ume 3t L ATl w, 4Tarc ati.cutspes Crer °
Ja.. erase s"reer .)
AL ses TLrstro gL »
a.. viTess. re’ o fl.e 5. WOLLD O LIT sEETINY
e 4
K - -

APPENDIX B

APPENDIX B

exT = Qelyr

. o Leflaait 0UTPLt !l.e extensict (s TFR - Jhange i
. TOAL. Cutput fi.es wl.. ve Lne spec.l.e? exiensicr’,
. defac.t:
xLrriner

cs.. inputs
. ' rler the hew Oefa.." ..e sxtengicr.
. Jela. s.o00,
. : TYpLiCa..y “hree .e%ters .Cng i.eave Cut the .. °

enc !

w..dcara:t
defa..? =
cJlEpeT = getyrn

. ' he-spec.fy Cutp.t parameters ICr eac! ifpyat fl.e?,
.50 .se "Ne J@fa.." Cu.pt !l.ename

. sela..T
.

De e same ak "he (npot l.en
.Il'..ntlc’

o.ipat

. . Linoexi(wlli.e,' ‘el
i.eniicefa..t _extension::

I.oulspel)iher

- leterrire whether Lne c.ilput .8 *C De vax or READRT lorma® .

ctype = 'V
ca.. inputsiprompt (5. ,ctype. ne.gd.
Ca.. sLrS.pcaseolype, clype:

req.est ez forma.
‘L routine Ir

Jliotype . eg. 'V it nern
ca.. aomute (S
ca.. cbopencidisx channe. outl,0li.e!

snitel, i e=ofl e, 528 us="new', form="unformatted’,
6 accesse'sequentia.’
eng .!

-- WorR oJul parametlers US..’IQ data {ror tne .nput header.

e _type=. .DAT
(T.spe. (20! .@G.2. .ano, (i.abe. _type=2 LFTR
‘i.ape. (17, .eq.Z .anc.{..aDe. '.ypo-l .PWR

r_cl _channe.s ~ l.ape.!7;

s per c.oCk = _.abe.(l; * 2

per_recorc = l.apei (2, ’!.abe.(l;

per ;..pm_b ocKk e Z.*l.cat{i.abe.{l;'"
apel (€;° u.mbo' _of c'u'melu

a

3 !Aoa' (rnumber c? channc s'.mbc.(ﬁ))
. tlocks = fractiona. _biocks - inv{
é {ractiona. blocks;
J!tfract.ona. _b.ocxs..:.(.000Cl)then
b.ocks_per _set = |
eise -
b.ocks_per sat = int{(i./fractiiona._blocks)+C.$5)

ame fractior = 2.7 oat(!.abe. (1)) (f.icat (liabe] (6))"
!habm Mircfloat (liabel (B})

fifiie type.eg.2) rame time = f{abe. (8!
tfifi.e type.eG.3, ‘rame time = .abe. (6)
c.ock_time = frame fraciior * frame time
trame_s.ze = Lfix(7.cat (iiabe. (8):*Tioat (1.aDe. (7))

& fioat(i.abe. (6,)/f,0at (bytes_per biock),
tftZrame_size ..t.blocks_per_record) ther
Le(disx, cq...lrd.f:amo size.lt.il)then
D.OCKRE_C_read =
else
blocks_to_read = blocks_par_recors
eno !

piocks_tc_read = frame_siie
end {f

. routine which Qets the ges!ir ™ing time and Ps into the
Ii.e o that time. The routine a.30 delermines -he tota. humper of
LiuckE o be read from the input flie.

cal. sx.pper(input _channe., samp.es per_ inpul_b.ock, fiabel (1),

APPENDIX B

Jes

v
XA

.
T
~_

(4

%;l"-"l ALK
Trrry

e
o'
X

RN
.. * ‘
e

v
1)

AT N
(A
'Il.’

YA N

Byt te
o
h)

£

A
LA A0

$'-ﬂ15$~‘

. _7
4
‘ﬁfl

YR
AR
’

v
d

.V.‘v -‘11
4 n' ’
I

n,:}‘n.
-’ .

‘.

.I..;l,‘j

30 APPENDIX B

[} 4.8De.,C.OCKS_p&I _recorc,c.olime, newtime, Ci8K,1kblk,
B {i.e_type,cliispec,itime,t0olal_DlOCKS,D.oCKk_time,
. frame time, fracliona._L.oc«s,nuUmDer_OI channels)

er to choose “he number c! cran $ 1o pul intc

! channei.s,outlspec, itime,

6 Charne.s_tc_process,pro u:—nyczopnancs,S‘.!:_flaq,u!ilc.
] w..dcara,sxip_fi.e; '
tfiskip_fl.e.®q..1gc tc .C2 »
e e e e e, N
- ¢ reader :c ref.ectl changes .
l.ape. L = 256
ifilape. (8 .eG.1 ther
- Make sure The recorc site i Lne header !s ar fa. number cf
== LL.LCKS. ‘.
.
Zo- ®.5_tC_process ' numoper of_ channe.s R
(moc ii.abe. (2. ,0%€¢ .re.T...ape.(2)=256€ 9
.
= zhanne.s_tlc_process N
(..ape. i} ,ie (,..apel 3 = -1 ®,
- .. e e s s e s e DI R R] -
process vector -
32w =, iChannels tc_process-l.
ar * e (¥-1,,chanfels_tc_process s
.iprocess (D lt.process{c: . tner ;
NnC.C ® process(x;
Frocessi(n, = process’::
grocess (' = hcic '
enc if "
enc IC .
end ac .
L.l

3c ; = 1, channe.s_li_process
K = (J°process i’ N
c.ape. (.. = gtore b.abe. (!
c.abe. ..} = stcre_b.abe. (k+.)

AR ,

nhe.s lc_process: -+ _;, .28

(g3

B A3
x = . !
x el -
3T . = L,nJmper ¢! channe.s -
Ltitx.eG.process (k) tner ”
$€.eCICI mask 't e | L
LI SEE &
e.se »
$¢.€I.0r_mase ! = { P
ens .
- »©
.- the outpuil fli.e
- '.
Liiutyre L e3. VLt hern DY
“e.. lerlle{disk channe. Oul,raw_header, .| <«
ca. .:i-a.w(a3sx_channe._out) |
e . se ’
Wy te 0 iraw header(l;,ie=.,512.
- e - l.ape. € . . ape. /B =
s rne. _Dytes * rnarner ¢! thanne.s N
e : = £.D3KE _1¢ reat * Dy.es per r.oacx h
: fr reac e {,ca%t L.oCKE _tC reac ®
. 4" L.OCKS per reccr s)
Tren . .13 _per reac .
....... . .
~umper ¢! by.es we neez ¢ [+ ¥
-l ithe size cf! “ne cutp.T vecicr Lf we rave —cre " har
- .-
. e
J -
.
.- a . se .
se’
.
st . !
34
o
.
§
L]

APPENDIX B K

F N ARANANSY e}

43

w
'3}

APPENDIX B 31 R

& float (blocks_to_read)) + 0.5) \~
J=1 (i
1«1 :
k=1
quit_flag = 0 »
quit_flag2 = C
jrec = 1
raw _bytes = 0
call reader(blocks to_read,bytes_per_block,disk, raw_bytes,

. quit_flag, jrec, Iblk, nblocks,quit_flag2, input_channei,

& disk_inpu:_channel,blocks_per_sel)
call transfer _status(alabel,oldtIme, newtime,

& channels_to_process,nunber of channels,process,

& hydrophones, {rames_to_read)
1f(quit_flag2.eq.l)go o 102
ifiquit_flag2.eq.2)go to 43

'Y

'

WL

ﬁé;.:nrou out';ny chann;i; we don‘t want and write the resulting data
to the output cisk flie. (watch out for multiplexed or demultiplexed
ta

S

1f(jrec.gt.frames_to_read)go to 102
1f (selector_mask (k) .ne.Cithen
do l=],consecutive_channel_bytes
output_data()) = raw_byte_data(l)
1 e 4+
4 =31
1f(i.gt.raw_bytes)then
ifiquit_flag.eq.1)go to 43
raw _bytes = C
call reader (blocks_to_read,bytes_per_block,disk,
& tau_bytes,quit_!lag,jrcc,1b1k,nbfocks,quit_flaq2,
& input_channel,disk_input_channel,blocks_per_set)
irec = jrec + 1 Ny
nrec = nrec + records_per read Ly
1f (mod(nrec,1C.).eq.0.0)then =)
call transfer_status(alabel,oldtime, newtime,
& channels_to_process,number of_channels,process,
é hydrophones, Irames_to_read)
end if
1 =1
1fiquit_flag2.eq.l)go to 102
1f(quit_fliag2.eq.2)go to 43
end 1if
1£(3.gt.1fin)then N
oblocks = (3/512) -
cail output (disk_channel_out, otype,oblocks,tblocks)
if(quit_flag.eq.l)go to 102
=1
end if
end do
else
{ = ! + congecutive_channel_bytes
if (i.Qt.raw_bytes)then
raw bytes = 0
calT reader (blocks_to_read,bytes_per_block,disk,raw bytes,
‘ quit_f.ag, jrec,iblk,nblocks,quit_flag2, input_channel,
& disx_input_channel,blocks_per_set)
jrec = irec + 1
nrec = nrec + records_per_read
{f (mod{nrec,10.}).eg.0.0)then
call transfer_status(alabel,oldtime,newtime,
channels_to_process,number_of_channels,process,
é hydrophones, {rames_to_read)
end if
1f(quit_flag2.eq.ligo to 102
if(quit_flag2.eq.2)go to 43
1 =1 - raw_bytes
1f(i.gt.raw_bytes)go to 50
end if

,.
SO

A
a.ﬁ %ﬂa

A"/’l

TRTATY 8 8y
'I’~ 'Y /."' P

1
4

k4

e LA

48 vy &S

e
e

-
end ¢ -
¥ ek +] .':.
i12(k.gt.number_of_channels)k = 1 uﬁ‘,
.......... D I R I R I I I I I R I I IS PP AP PaRa™
Update program status on terminal 'J{:
go to 49)
Cenaee et eessenctesasaeranconeaaas teveeteararenscasrereassnsaasanne oA
If wildcard process next f!le - otherwise let user choose tc -
Process another or exit, Alsc close the input disk fille, o
1
itime = itime + 1 o0
if{cisk.eq.1)then i}\
call dbclose(disk_input_channel) o
end Lf u_t
if{ctiype.eg.'V*'ithen "
LN DU et i “nd
C.ose output file, but first calculate the number cof records in the \J

fi.e and rewrite the header block

iiabe. {2) = tblocks * llabel (1) / ilabel (2)

APPENDIX B

7]
3]

APPENDIX B

dowriie(disk_charne._out,raw_header,l,lerr,C;
dowait (alsx_channei ol
ca.. dociose(disk_channel out;
e.se
close{unitm=2)
enc .f
{fiwiliacara)then
gc tc 18
e.se
cefault = 'N'
anciner = getyn i

& Co yo. want to process another fiie?’,
& *olefau.t is Lo exit the program,°,
é aefau.t)
if { another) gc to 19
enc :f

(a.sk.ne..)then

‘.
L2
wr.te(3,*)* Dismounting Tape'
Mask = AMLST nounioad
status = sysScismou(cnan, Mval (mask;!
sfi.not.statusicall .ipSstop(Aval (status))

P
e

bY

L3
2
12}
[

stop
enc

suibroutine check ({osb, lpos)
< Tris routine checks the status word Of tnhe josb (ioc status bulfer)
< n.ffer returnec Dy system Ca.is ang aborts the program .Z probiems occur.
integer*? 10so(4)
{f(iosp(l).ne. 1) then
type®,' error ir system ca.. ai position‘,ipos
go L = 1,4
typelOl, 1, tosb (i}
PRl format (5x, ‘text_lospi(',12,') - *,18;
enddo
stop
end!f
return
end

B2 - Listing of Data Output Routine

e r s N e e e N NP PR NP B PP I P F P NP RSN PR IRNSPEee PRI IRNRSIOTRNIIRESIOIRRESIOTSEVTORIOTRES

c Subroutine NAME: OUTPUT M

oA R T E R TR R R R R R R R R

C writter by:
c Jesepr. B. Farrel.l
c DREA
c 15 Feb, 1986
C
< Latest revision: 7 Aug. 1986
subroutine output (output_channel,filetype,oblocks, tblocks)
C
< This routine writes sorted output data into a disk fiie using
< the DBMT routines from NRL.
C
byte output_data (1024C
character Ziletype
integer*4 ob.ocks
integer*4 output_channel
integer*4 tbiocks

common /odata/output_data
tblocks = tblocks + oblocks

C. cheecen
C-- Write the sorted ouzput data to the dlsk file,
~
c

if(filetype.eg.'V'.or.filetype.eq.'v')hen
call dbwrite(output_channel,outpul_data,oblocks
cail dbwait {output_channel)
else
write(2) (output_cata(lx), l1x=1, (512*opiocks))
end if

APPENDIX B

AN VR

APPENDIX B

return
enc

B3 - Listing of Mag-Tape File Open Routine "MTFILE"

:t.tl'.'l"Qlt...'.'.'"'.!".t"..""!...'l'..t"'l'.l"-..'t.'-.t..'.
< Subroutine NAME: MTFILE *
C'"l-ltIt'-'.'-"'.'-.t-.---.'t"t'lt.t'tt"l.""."t"‘."t"".'t.lt
< Written by:
o D. Vance Crowe & Joseph B. Farrell
< DREA
C 12 Mar. 1986
< Latest revision: 15 Mar, 1986
SUBROUTINE MTFILE (input chanrnel, header, ifile, wfi{le, itime,
‘ verify,start_tlle,stop_file)
7 Tnis subroutine opens a DREA data file from mag tape.
c<ll" Farameter and internal variable declarations.
IMPLICIT INTEGER*4 (a-2)
PARAMETER MSGe=5S
BYTE 1C0 !Null byte = Null character
BYTE buffer (512) !'Raw header data
BYTE header (512) 'Raw header data
CHARACTER*8C label !File name labelis.
CHARACTER chan*é !Used in mag tape channel
CHARACTER default*l 'User input default
CHARACTER help (msg) *B0 !User help prompts
CHARACTER 1fi1e*64 !Input filename
CHARACTER iecnull 'Null byte = Null character
CHARACTER prompt (msg) *80 !User prompts
CHARACTER tape_mark (10) !Checks tape marks
CHARACTER tape_name (10) !Header filename
CHARACTER*12 VOLi_HDR1 !VOL., HDR1l and EOF. labels
CHARACTER wiile*64 'working file name
INTEGER®2 file_count
INTEGER*2 input channel !Input channel for tape
INTEGER*2 text Tosb(4) !Status buffer
INTEGER®*2 iskip iskip count
INTEGER*2 start_flie
INTEGER*2 stop_fiie
INTEGER whai_to_do toption flag for file search
LOGICAL end_o! tape 'Eng of tape indicator
LOGICAL correct_file 'Fiie flag
LOGICAL Qetyn !User response function
LOGICAL skip iSkip file flag
LOGICAL verify
equivalence { tape name{l),buffer(S))
equivaience { label,buffer(l) }
equivalence (icC,icnull)
commor /io_statistics/Jjrec,nrec
external i1oS_skipfiie,lo$_readvblk, io$_skiprecord, ioS_rewind
Data VCLI_HDR1/'VOLIHDRIEOFl'/, IT0/0/, what_to_do/=~1/
i Daufcruserinter:aco eeerenrreaneaaans
cata {(prompt{i),i=l,msg)/
&' Enter name for the input datafile.‘,
&' Want to pass over this flie?(-1=y/0O=only/i=no/2~rewind)"’,
¢' Lnter a name for the Disk output flle.',
&' How many da%ta frames dc you want to read?’,
&' Shou.d the output fille be Vax (V) or READRT (R) format?'/
aata (heip(l),i=1,msqg)/
&' Flle rname: UNIT or STRUCTURE:NAME.EXTENSION',
&' ~lepass flleélook at next/(=correct/i=use f.le/2e=rewind.’,
¢' Default name w!li be the same as the inpct filename.',
&' Frames to read from the input file.',
. (V) format compatible with DISPVAX, SASPEC, etc,'/
c data !flie/'msaC:g38334.daz'/

chan='_‘//ifiie(i:5)

APPENDIX B

33

o .":‘ R

XA

l 4
G

TS A

=

o e e PN R
& Lo &

-

oy
I~I [/

"'
A

e
TN
X0y >y

EA8

NL

P

Ve,
v

.
.

P
»

PN

.5‘:'-"\"'
Y
LY

/\.’";.' I.'I.'{...‘
Sy Ay Ny A Ny Yy ‘f)

4 >

A EA

A
P A AT

s
'Y A

YWY

34

[XA X2

s2CTCY Y

(8]

APPENDIX B

Tape

status~sysSassign(chan, input_channel,,)

{f{.notv.status)cal. iibSstcp(dval (status})
enc .
Lf{file_count.Qt.stop_fiie)stop ‘Al. flles processed.'

heaager (incl. filerame; from tape into ‘buffer'

ow (, %val (inpct_channel},icS_readvblk,tex:_losb,,
Ty,wval(512),,,.)
sjcall libSstop(sval(status))

Worn 0
YY)
c -

tf{.not.status.or.tex:_lost(2).eg.C)then Ithere was an error
jerror =
if({rext losp{2).ne.C)then !there was & tape reag error
else 'cr there was an EOF

end {f
.

If(ierror.Eg.1) Go te 11C !Try again

ltype = INDEX({ VOLI HDR1, label(l:3))
If{:type.Eq.Cithen
If ({time.eq.:)then
iskip = -2 'Procably & data recorgs - o back to file star:
eise
isxip = 2 !Probakbiy a dats record - gC ahead te f.le st
end if
end {£
If{itype.E5.1) Go to 110 !VOL label, read nex: header
If(itype.EG.5) Go to 150 !HDR lapel, check names etc
Ifiltype.EG.9) lskip = +1 !EOF labe., skip forward i EOF
'Sx.:pping file marks
status=sysSGlow(, ¥val (input_channel}, 10o$_skipflile,
M text_lost,,,¥valliskipl,,,,,)

if(.not.status)call libSstop(fval{status})
cal. check(text_iosb,-3)
Go to 11¢

Came Creck tc see L{f we've reachec the end cf this tape (Fllename all 0's)

<
e

LRESNg]

€7

“raaa

[EXAES

[SNANE]

-— If not at end of <he tape, check -
--- numbered flie. If we are, pos.i.:

enc_of_tape = .true.

gc T «1,1C
1f (tape_name (i) .ne. icnuil) then
ns_of_tape = .faise.
encdlf

end do
if (end_ol_tape) ther
type*, ‘Eind of tape encountered, Rewinding.'®

Rew:"d tape!...

status=sysSGgiow({, Sva.{input_cnanre.), i0S_rewinz,text_ICSD,,,,,,v,)
if{,not.status)call lioSstopitva. (status)
what_tc do = -1
So o 110 'Rec tne volume .abels
end if

see I we're picking a
e tape tc that flle,

fes

Lf(start_fille.gt.l.and.itime.eq. . tren
iskip = 3 * (start flle - 1;
file coun i -
Ty '
5o
X

ccrrect_flle =« .true.

If we're doing rumberea ! check the fil.ename.

APPENDIX B

L g% % % L4

48 5% 4% s

- @ o o o -
L)

by
N
“
*
b

APPENDIX B 33

K
]
“ c
'e il=ichar(tape_name (1))
¢ if (11.ne.i2) then
¢ correct file = .false.
. go to 21
end if
else
+ Citeevorasonavonssnsasnosasnsscscscassvosossonessosvssonnsssncnesoansonoses
4 Cmvm If we got a wildcard character, look for '.‘' if period_flag = 0.
. Cc
M 1£ (period flag.eq.O)then
N do whiTe (ichar(tape_ name(i)).ne 46.and,
., c 1.18.10)
\ {ieais+
i end do
1 =1-1
period flag = 1
else

Citinracssessessascssonasosanoonsssensetossesnsvansosvecesvasnoonnnosons
A . [1f we've already passed the '.' then filename {s assumed correct.
[

f go to 20
end if
{ end if
Y j-j¢1
' - if(3.gt.name_length)go to 20
end do
[+ If this was the correct file, indicate success and proceed.
W if (correct_file) then
20 do k = 1,Index(ifile,*:")
i wfile(k:k} = ifile(k:k)
> end do 4
N do k = 1,10 .
£ J=k+ index(ifile,':') g
+ wfile(j:3) = tape_name (k)
hJ end do
M type*,* file ',wfile(6:15),' found'
goto 220
3 end if
M Cutn
Cowa If it's not the right file, skip to the next one (giving the user
hed C=w= the option of processing the file which has been found).
b4 c
e 21 continue
. if (verify)then h
4 type*,' Found file: ', tape_name
3 If (what_to_do.Eq. -1) Then !Ask the question the first time
call 1nputT(prompt(2),what to_do, help(2))
Endif
3 else §
' what_to_do = 0 h
* end if
E If (what_to_do .Eq. 0) Go to 180 {Find the correct file
B If(what_to_do .Eq. 1) Go to 190 1Use this file as correct one
¥ I1f(what_to_do .Eq. 2) 6o to 160 !Rewind tape.
) 1f(what_to_do .Ne.-1) Then
Type *,' Assume you want to skip to next file.,*
o endif
180 igkip = +3
type*,' Skipping to next file.®
c Go to 120 1Skip forward 3 file marks. 0
: C The user wants this file that he/she found. R
1%0 do k = 1,index(ifile, ':") R
N wiile(k:k) = ifile(k:k)
. end do "
» do k = 1,10 .
’ 3=k+ index(ifile,’:')
wiile(3:3) ~ tape_name (k)
end do .
go to 220 h
) Crm- Skip over file mark to the beginning of the drea header data K
\ C
220 status=gysSqiow (, Sval (input_channel), io$_skiprecord,
text 1osb,,,tval(1),,,,,)
1f(.not . status)call lib$stop(sval (status))
Coieeererenonronsssenonsnensocsonssnsrsnnconannan ceeescestrncascenns
Comm We're finally in position, so read in the DREA header
<
status=sys$qlow(,bval (input_channel), io$_readvblk,text_iosb,,
1 ,Aref (buffer), ¢val(512),,,,7 b
o if(.not,status)call libSstopi(sval (status)) 4
jod Type *,' finished reading drea header'
call check (text_losb,-5) A
c
3 Gttt etnaesenuoonussoansosseassnsasssnanossonsasetsosoanssssnesananssnnn g
., Come At this point, we've read in the header from tape. ¥
¥ c (
file count = fille_count + 1
DO 310 14«1,512 i
31¢ heador(ii)-butfcr(li) 3

. APPENDIX B y

- - -

- - e e e

WP et Vg,

APPENDIX B

RETURN
END

B4 - Routine to Allocate and Mount Mag-Tape

R R T T T T T

C Subroutine NAME: GETT. hd

(A R P R T T % T

Written by:
Joseph B. Farrel.
CREA

°
15 Mar. 1986

[aXeXaNaNaRaNe]

Latest revision: 7 Aug. 1986

subroutine gettap{chan;
structure /itmisz/
union
map
INTEGER®*2 buflen
INTEGER®*2 code
INTEGER"4 bufadr
INTEGER*4 endlst
end map

map
INTEGER®4 end_list
end map
end union
end structure

record /itmlst/ mnt_list (3
include ' (Smntdef)’
include ‘ (Sdmtdef) '
inciude ’ (Sssdef)’®

CHARACTER chan*é
INTEGER*4 mask /C/
INTEGER*4 tatus
INTEGER®*4 sysSmount
INTEGER®*4 sysSalioc

‘Used in mag tape channe.l

—-—— Allocate and mount the maj tape.

status = sysSalloc(char,,,,)

Comm If tape 1s'ui
ot

dy mountec ;&ip MOLNIiNG section.

1f (status.eq.ssS_devmount)zhen
type®, 'Tape is a.reacy mouried - assuming yo. d.g
go to 10

end if

1f (status.eq.ss$_deval.oc)tner
write(5,*)* ErIor - device probaf.y a..ccatec ¢ anoiher iser’
stop

end 1f

1f (status.eG.ss$S deva.ra..oc:zher
write(S,*: ‘Device aiready a.iocated i¢ you.'

end 1f

rask = C

mask = mnt$m_foreigr .or. mniSm _message .or. mr:S5r_noassist

mnt_list(l).buflen = 6
mnt_list (1).code = mnt$_devnar
mnt _iist{l).bu.fadr = &ioc(chan:
mnt_list (1) .endisy = C

t_list (2).bulien = ¢
mnt_list {2).code = mntS_flags
mnt_list(2).bufadr = 8ioc(mask)

()

mnt_list (2).,endlst = C
mnt_list(3).end_list = C

$tatus « sysSmourt (mnt_list
Lf{{.not.status)ca.. (.!DSstopi%va. sta.s
continue

return

eng

w
o

B35 - Channel Selection Subroutine

fel R R R T R R
~

< SUBROUTINE MAME: “racce. Ge.e-’ .

APPENDIX B

¢,
APPENDIX B 3 8
't
. 1
e e T e R EEE RSP Ee000et0seIIeeITsIaesTeteePERRetTTTeTSIITISIIYIEROIRES by
ax
Writter by: o
Josepr. B. Farrel. A1)
OREA e,
27 Fer. 1906
Lates: revisiorn: 8 Jul. 198¢ ~‘|;'
This subroutine chooses which of the channels ir an RT-1i or VAX ¢
format cata flie are o be processed. It Jses the GETVEC sudbroutine 8y

wr.zter by Doug Peters (ASP Summer Studeni; to read a vector from the
4se@rI‘s termina..

IS 4y

n
SUBROUTINE CALLS: e
1) INPUTI = Routine which reads ar. integer from the !
terrinal
2} GETVEC = Routine which reads a vector from %he e oy,
termina.. .f'.
3; WAIT = Waits Ior a spec.fied amount of time. R
4. Erase_screer = Ciears the LeImina. screer. ’-.
t. Set_curscr = Moves the Curscr tc a specified .ocation V‘.‘.

B R R R R T R N R L LR R R R P

MAIN CODE

P T4 0000000ttt Ittt ettt ittt st tatttdtt sttt srsdtttettrtitodesttsssttbrse

-« v e
>

K

AR A R R A NA AR AR R R RN AN A A WA WA NA R N WA NA N g

suproutine channe._se.ec: (D.abe.,number of_channe.s,outspec, time,

3 channe.s tc process,rrocess, nydrophones,s:fs f.ag,wfi.e, S
‘ wi.acara; skIp) - yR
T it i i e et tie s teeansnesassanaraenssesoennstannaaananeat et oenaranennnes <&,
Te=- Farameter and intleIna. variapie dec.arations. _h.‘
< .

imglicit inteQer*4 (a-2)

)

pArameer msQge.l

W

byte biapei (128
character default®*l ‘?
craracter helip imsg) *7C U
character wilie*64)
craracier prompt (msg) *7C Y
character response*l -
character tring®ld _-.;
integer*2 cnanne.s (128) ’;"’
integer*: origina._channels(126) L)
‘nteger*2 rydrophones (129)
irtegerTs new HP ~ &
integer*2 number_of_channeis S
integer®? number_of hydrophones Sy
integer*2 phones{.28) o
irteQer*2 cr:qinalrphonos(lu) &Y
inzeger*? process (128 \".'
integer®? sift_fiag :\:
integer®4 channels_tc_process ':f Y
inteQer*4 original_channels to_process
inteQerts chack _channe.
integerc4 finssk
integer*4 itiag
integer®4 ip
LOGICAL ail flag _‘-’
LOGICTAL ok (T28) NS
LOGICAL out spec "ol
LOGICAL preserve_phones ro
LOGICAL proceed el
LOGICAL wildcard
rea.”4 va. (128} Y
LA
)
cata (promptii;,iel msg)/ YA
+' How many channels do you want to process? (-. for all)'/ Y
daza (help(l),i=l,MS8G)/ "':
&' Enter the number of channe.s to process.’'/ -
5
O
r of o
HP = T N
tfTrime.eq.i.or.outspec;al. _f.ag = .FALSE. N,
O B 5!
le.ermire wnicr cranne.s Contalr acoustic dat ",\
ry3rophone numpers anc corresponding channels. . N
WOa Y
dc lel,2*rumber_c!_channeis,?

APPENDIX B

APPENDIX B

kK= 3/2
1f (blabe. (i) .ge, Q)then
number _of_hydrophones = number_of_ hydrophones + 1
channels (number of hydxophonos) =K
phones (number_of_hydrophones) = blabel (1)
end {f
end do

Must De 2% least one hydrophone in the file,

1€ (number_of rydzophoncl P8 A B
stop 'Channel _select - no acoustic data found in file.'

numpers or H/P numbers toc be preserved between

if(.not.outspec.and.itime.eqg.l.and.wildcard)then
defaulit = 'Yy
preserve_phones = getyn(
* Select the same H/P (Y) or channels (N) from each file2?',
. Default will seiect the same H/P from each input file.‘,
default)
i
time > 1 compare hydrophones with those from the original file
and urite out a warrning if the chosen ones differ,

1£(.not.outspec.and.itime.gt.l)then
missing_flag = ¢
1

Loox 'rtoucn the available pnonts to see if the desired ones are
there.

do 3 = 1, original_channels to_process
do k = i,number_ “of _hyarophones
1f (phones(x}.eq.original _phones (3} }then

Use the process vecter to point at the jocation of the des‘red
H/P Lf we're keying on H/P.

1f (preserve phones)then
process (1) = k
1l a1+
end if
go to 7
end if
end do

Sen a flag to indicate H/P mis;inq if we can't find one.

missing_flag = 1
continue
end do
17 there are /P missing write a warning and let the user decide
wnat to do.

i’(missinc _flag.eq.l)ithen
call erase_screen(l,l)
call set_cursor(2,1)
call vtmess('re‘,'c*,*' Channel Setup ')
type 1000,wfile
format (' Working on file: *',A20)
type*,' The h/p available differ from the originals.'
type *,' OLD: ‘', (original_phones(33), Ji=1,
orxqinal channels _to_process)
type *,* NEW: 7, (phones(33}), 3i=1,
number _of_hydrophones)
if(.not. proserve_phones)then
type*,' You are keying on channels rather than ghones °,
‘so I am proceeding.*
call wait('0 ::3',5)
end 1f
- f{ we're preserving a set of H/P betwen files,
Op'ion to proceed with the found subset of H/P or to sxip Zile.

(A XaRa XAl
LI A
1
1

if (preserve_phones)then
proceed = ,false,
if(l.qt.l)then
default = 'y*
proceed = getyn(
‘Proceed using the subset of requested thores found?’,
‘Re-specify H/P or skip this file if reply .= N.',
default)
end {f
- I1f the user chose rot to proceed with the subset found,
-—— the option on re-specifying the H/P or of skipping =he ¢

APPENDIX B

L Y LRI ' f' L
A ' .,
\rr:; "ﬂ:rﬂ.f' f:* .$ ‘w\‘f\' .ifx\irk |; -:;

8,

APPENDIX B

1f{.not.proceed)then
default = 'Y
proceed = getyn(
‘Skip to the next file in the input aet?',

-

s 'Default is to request a new set cf K/P to process.’'

3 default)

LI (proceed)then
skip = 1
return

else
new_HP = 1
go to 8

end {f

end 1f
end if

C
o b4 wc re using the subset, continuo processing.
C

end if

Cowmm I1¢ we're keying on channels rather than H/P make sure we have
L= enough channels.

1¢(.not, prclotvc_phonos)thon

Comm Only do it if we
C

re not processing all channels in the file.

if(.not.all_flag)then
k=1

do J = l,original_channels_to_process

Covinnn .
{o=== Cnheck to see if l roquostod chlnnc. is > than the ¢ we have.
o

‘!(oriqinax _channels (J) .gt.number_of_hydrophones)then
type*, You asked for a chanfiel not found in the’,

] ¢ input file.*
Covinnnnnn T T

-—— 1f channei out of range,

ser can skip file or proceed.

default = ‘'Y’
proceed = Qetyn(
[‘Skip to the next file in the lnput set?°,

& ‘Otherwise use this file with reduced ¢ of chans.

& default)
if (proceed)then
skip = 1
return
end if
else
type*,' Proceding with reduced ¢ of channels.'
proccss(k) = original_channels(3)

channels_to_process = k - 1
end 1if
end 1if
end if
if(ali_flag)then
channels_to_process = number_of_channels

go to 5
end if
C:;‘éioar.thc.scro;n ;nd.géiég';.ﬂ;;é;;'ﬁ;;;;é;:.'..'.'.. R
o}
if(itime l.or.outspec)then
] call _screen(l, 1)
call set_cursor(2,1)
call vtmess(‘re’,'c’,’' Channel Setup ')
C............................. eesesessesieesseress sttt ntnosnnnsnn
Comm Show the acoustic channels available and let the user choos
-

type 1, number of channels
format {* *,t3,7 There are',13,' channels in the input file

e

type 2, (channels(l),i=l,number_of_ hydrophonas)
2 format (' ',t3,* The following aTe acoustic channels: '/
3 ! ',t3 26(12:',')/' ',t3,26(82:0,%) /" ',03,26(42:, ")

type 3, (phono-(i),i-l number_ cf{ hydrophones)
3 format (' ',t3,' The corrosponaing H/P numbers are: °‘/
& O, t3,26(12:0,)/ ,3,26(82:0, 0/ 1 ,03,26(82:0, ")

channels_to_process = -}
4 call inputlTprompt(1),chann01: to_process,help(l))
end if

[T B P e veaans

Comw Se: flag indicating ali channe.s to be procclsod.tor |ub|oquont
Com-= files L{f necessary.

ff(itime.eq.1l.0r.new_HP.eq...or.cutspec)then
ifi{channels_to proco-s eq.~l}then

APPENDIX B

some.

.

F2 I

t
&

'i"l

“»
ANV
-

2
e

s
o

5

2Rt

LR
g
A

»
.

o\ s

"

.
LN

)

by

. 40 APPENDIX B

. ail lkao = _TRUE.
channe.s _to_process = number of_channels
4 end if
) original_channels_to_process = channels_to_process
K ena if

- User must choose hydxophonos >= 1 and <= number avallable

if (channels_to_process .lt. 1 .or.

& channels to_process .gt. number of channels) then
type 3500

) 3scet format (/' channei_select - illegal number of channels to',
» [' process choser.'/)
, ca.l watt(*C ::2',5)
ca.l erase_screen(5,1)
go to ¢

- wnad al. H/P, channels and qains if all are to bo analyzcd.

0o

eise 1 (channels_to_process .eqg. number of channeis) then
F do 40¢ A-A,numncz of _Channels
process (i) = |
hydrophones {.) = phones ()
{f(itime.eq.l)then
origiral_phones(!) = phones (i)
originai_channeis (i) = process(i)
end {f
4°C cont inue
return
end if

................... Becsevcsss sttt e sennr st

Iaontify ind'vidua‘ h/P if a subset of the total was chosen.

w

[SEAKS]
]
]
]

--- -

if{itime.eq.l.or.new_HP.eG.l.or.outspac)then
type 400C

400¢C format (/' ',t3,' Enter the cnannels you wish to study : ', $)
call getvec(val,ok,channels_to_process)
if (ok{l)) then

do j=1,channels_to_process

process (3)=int (val(}))
end do

-—— .Set flag to indicate that a channel l) must be removed from dat

sifr_flag = 1
else
type '{/*'*' channel select - sorry, no default,'’')’
call watt('C ::2',%5)
call erase_screen(5,l)
go to 4
end {f
end {f
do liel,channels_to_process
hydrophoncs(3) = phones (process(}})
{f(itime.eaq.l)then
original_phones(J) = phones(p-ocess(3))
originai” _channels (j) = process ()
» end if
-l end do
return
end

(Sl Sl ot W
[$EANA)

B6 - Routine For Choosing Data Segment To Be Transferred

LR A R R L P PR R T Y R T T T L TN R YR AP ip iy

SUBROUTINE NAME: SKIPPER .

LR A N R

Written by:
Joseph B. Farrell
DREA

14 Feb. 1986
Latest revision: 23 May. 1986
This program uses the header to determine the starting time cf ar -
input fille, asks the user tc enter a desired star: time, and then c-eps
into the file the desired amount.
PELB442 8440054244044 4 0392442004409 92044 9449444494400 4400400000000

MAIN CODE

[of e A R L L T TR R A S A U RO

AN e Ee A NARA N NA N Na RN Na NS N A NSY

subroutine skipper (input_char,points_per_| block, sampling_frequency,
1 alabel,blocks_per_ record, oldt ime, new: iffe, disk, disk start _block,
. 1 file_type, outspec,itime,total blocks,block _time, frame Lim-,

1 fractional _blocks, number_of_ channels

<

C--- Parameter and 1nttrnnl variabl o cclnr.tlonl.

. APPENDIX B

mmm a4 W
n':f
]
i
APPENDIX B 41 "
il
<
IMPLICIT INTEGER*4 (a-2) .
PARAMETER msg=2 l's‘ g
A
CHARACTER alabel*32C
CHARACTER default*l g
CHARACTER help tmsg) *7C [)
CHARACTER newt ime*8 p;}
CHARACTER oldtime*s P
CHARACTER Transtime*® (\,
CHARACTER prompt (msg) *70 '\’
A)
INTEGER blocks_per_record T
INTEGER blocks_to_skip
INTEGER"4 alsk
INTEGER*4 disk_start_block
INTEGER®2 file type }"@ N
INTEGER"2 input_chan DY,
INTEGER*4 ttime RLC
3 INTEGER*2 new_time(3) wi'
INTEGER*2 number_of_channeis Ko,
INTEGER®2 redo t !
INTEGER®*2 text josb(4) L] il
INTEGER*4 total_blocks S
INTEGER®*2 transler_time(3) «L
-
LOGICAL getyn -
LOGICAL newt im oY
LOGICAL out spec p
LOGICAL status o
REAL begin_time R
REAL block_time <\
REAL tractTonal_blocks 'y
REAL frame time -~
REAL old_tTme(3) .t
REAL points_per_block
REAL biocks_per_hour = 3
REAL real skip o
REAL sampling_frequency B,)
REAL tape_time »)
REAL test s
REAL time_d{fference .'\J
EXTERNAL 105_skipfile, io$_readvbik, io$_skiprecord, i0S_rewind ..",‘
c Ciescereesiroaanneraeereonans ereersennee X
data {(prompt (1),1~1,msq)/ N ¢
&' Do you want to begin processing at some other time.‘, . 4
&' Enter the time at which you wish to start.'/ :,,-;
data (help(i),i=1,msqg)/ \'\
&' Default l!s to start at the time shown.', h ('.
&' Format is HH:MM:$S.'/ \;ﬁ
C ettt aunaeeaaaresosesnssanassasaroansoasennecrnntetntannnnn [K
C~=-- Variable initializations. '}l. s
C
rewtim = .false. [p—
oldtime(l:) = alabel(12:19) RASL
newtime(l:) = alabel(12:19) e’
if(file_type.eq.l)ithen el
blocks_per_hour = 3600.*sampling_frequency/)
1 (points_per_block) "I"I
block time = 1./blocks_per_hour % N
end if \;\‘;
C
‘ L 3
) newtim = .FALSE. R
if(itime.eq.l.0r,outspec)then r\f
[call erase_screen(l,l)
call ser_cursor(z,1l) & 5N
call vimess('re','c',' This file starts at '//alabel(12:19),' 9 » '“0
C-== Lle the user determine a start time for data analysis. - §
Comw (1f NEWTIM is returned as "FALSE" analysis starts at the beginning "q. ‘.
b C--- of the file.) L2
c .
default = 'N’
newtim = getyn(prompt (1), help(l),default) ‘e
end {f ')"
1f{ newtim)then ‘o
Gttt et e tree e e e eaaet et e D
C--- Decode the file start time into the vector Oid_time. AR !
<
decode (2,100, alabel (12:13)101d_time (1] N
decode (2,100C,alabel (15:16))0ld_time(2) o .\
decode (2,10CC,slabel (18:19))0ld_time (3}
pReieiy format (£2.0))
Covinnenn e e s s raeacraeeaeasent et reasesveterasiasansan F N .'\".
I,
c‘-:'\
APPENDIX B Ba%
‘J\l
o’

o A

Wy Vg~ .
EOINE N,
Yoy

bents 30t

s

A L 1A

APPENDIX B

Ie-- I! we're changing start times, reac .r the new time ana “DECODE™
--- inte the array New_time,

,e
"

ca.l. inputs(prompt (2),newtime, help(2)}
ifthewiime.eq.0ictime)go tc I
cecode (2,100, newtime (1:2)) new_time (1)
oocoaefz,IOCZ,noutimc(G:S))nou_timc&Z)
decode (2,10C, newtime (7:8)) new_time (3)
N format (12)
T--- Tape_Lime i3 scl t0 the input file start timc iin occ‘ma‘ nours) .
T-=-= beg: r_’;mc is set ¢ the processing start time.
-

tape_time = old time(l) + (old_time(2) / 60.C) «

1 (018_time(3) / 360C.0)
pegin :ime = {loat (new_time(l)}+(fiocat (new_time(21)/ 6C.0)+
K {fl0at (new_time(3)) / 3600.C)

time d:!!eteﬁco = begin_time - tape_time
Maxe Sure we start on a block wh
1! we're aoling a .DAT file.

1cr begins u.cr tha first cnanncA

nplocks = 1
if {fracticna._blocks,.gr.0.0001)then
go nplocks = 2,number of_ channels
tes: = fioat (nolocks)®fractional_blocks
12{ (abs(test) - abs{int(test)}).1lt.0.000))then
go to 22
end {f
end do
enc if

T-- Check tc maxe sure we aren‘'t moving irto the middle ot ar FF7 or
C-- & spectrum if the fiie is _FTR or .PWR

1fifile type.eg.2)call timer(time_difference, frame_t ime, redo}

tf(file type.eq.3)call timer(time_difference, frame_time, redo)

if{redc.eg.l)gc to 21
C:;: ..5;£;;*1;;'5;w ﬁa;y rcco;&;'éé.sk ‘p betore beqinninq procol:iaq:.
Com- {(file_typesl indicates .DAT, =2 indicates .FTR, and =3 ,PWR)
52 1f(file type.eg.l)then

blocks_to_skip = int (blocks_per_hour * time di{fference)

C--Make sure we start on a block which begins with the first channel
C~~ 1f we're doing a .DAT file,
2

3 1f (amod {filoat (Diocks_to_skip), float (nblocks)) .eq.
& O.)ther
go to 23
else
blocks_to_skip = blocks_to_skip - 1
go to 24
end if
real_skip=tape_time + (float (blocks_to_skip)/blocks_per _hour
else
biocks _to_skip = (int{time_difference / block_time))
real_skip=tape_time + (fioa:(blocks_to_skip) * block _time)
ena if
C--= Set the start time to the time we're actually going to skip
Camm ‘nto the file (We may not be able to skip exactly to the requested

~
I

)

-—- time because of the finite record lenght in the input flle).

new time(l) = int(real skip)

real _skip = (real_skip=new_time(l}))*6C

new time(?) = int{real cklp)

real _skip = (real skip-ncw time(2))*60

new time(!) * nint (real skip)
- “EN'CDE“ thc ac:uaa star: time into the character sting NEH”INE
--- arc display it or the user's terminal.

[REREANSY

encode (2,100, newtime(1:2)) new_time(l)
encode (2,10C1, newtime (4:5)) new_time(2
encode (2, 1001, newtime (7:8)) new timc(J)
type*,' Actual start time wili be ',newtime
alube‘(12:19)-nowtimc(1 8)

--- Seigp rocorct on tape {f that is the media being used.

oy

if (blocks_to_skip .ne. 0) then
type*,biocks to_skip,' physica. biocks will be sk pped.
ntatuu-:yn!qiov(,\v.¢(1nput _chan), 10S_sxiprecord, tex: iosb,,
N ‘V.A(DAQC" Lo _SKiP),vass)
{{.,not.sta us)ca.l liDSstop(Vval (status)
CIA. check (rext_josb,-il)

APPENDIX B

‘. S ." . .‘ Al - - .’ - -'Q - .‘\ - . oW .\ -
NG IS TR \-$ -"\'\ ~ ’sv- R CSCH RN R ORO, St
Cy f 0 » U (S
A X v’. LAy v A A A g v D% W,

v_ g _»

= <5y ¥

APPENDIX B

endif
else
C ittt itessasnncsaccceasosonosonarssvsasssaosssssonnarsrasoscccncovansnnosss
Cm=~ Set the start block for reads from disk.
C
disk_start_block = blocks_to_skip + 1
type?,* DIsk start block will be: *,disk_start_block
end if
call walt (*0 ::2°,5)
else
Cieitssnsnnsanssoeassannnsansosacessasesasacnsesnoasetasessansraonsanonsnss
C-- Control jumps here if we're going to start at the beginning of the
c file.
C
1

disk_start_tlock = 1

end if
Bttt seeeneasonsceensssocsnacacceonosvorasnsansmsnonsosonassacneanssas
Come Now give the user the option of specifying the number of records
C--- tc be read from the input file or specifiying a time interval.
C

if({itime.eg.l.0r.outspec)then
tctal blocks = -1
call Tnputi(
‘* Enter n to X-fer n blocks,~l for all,-2 to specify time’,
[3 total blocks,
& * =2 will let you enter a time interval for the transfer.')
1f(total _blocks.eq.-1l)then
total_blocks = 100000
else
{f(total_blocks.eq.-2)then
transtime = *‘00:01:00°

-

20 call inputs(
3 * Enter the length of time of the transfer.’,
6 transtime,
[3 * Format is HH:MM:S§S.')

decode (2,100]1,transtime (1:2))transfer_time(l)
decode (2,1001,transtime (4:5))transfer_ _time (2)
decode (2,1001,transtime (7:8))transfer_time (3)
time dif!otcnce = transfer _time(l) + (transfer _time(2) / 60.0} +
1 (transfer_time(3) / 3600.0)
1f(time_difference.eqg.0)ther
type*,' You specified a zero-length transfer - try again.’'
go to 20
end if

C-~ Check to make sure we're transferring at least & full FFT or spectrum
<

1f(file_type.eq.2)call timer(time_difference, frame_time, redo)
1f({file _type.eq.3)call timer (time_ di’toxonco,!rlmo t ime, redo)
1f(redo.eq.1)go to 20
total_blocks = time difference / block_time
1f (total_blocks.eq.%)then
type*,’ WARNING - you are trying to transfer 0 blocks!®,

[* Try asgain.'
type*,' Transfer time must be at least‘,
& frame time*3600.
go to 20
end 1f
else
total_blocks = total_blocks * blocks_per_record
end if
end 1if
end 1if
return
end

subroutine timer (time_difference,unit_time, redo)

IMPLICIT INTEGER*4 (a-2)

INTEGER®*2 choose
INTEGER®2 redo

REAL check

REAL seconds

REAL time_difference
REAL unit time

redo = 0

check = amod(time_difference,unit_time)

seconds = unit timc * 3600,

if (check.ne.0.7then
type*,' You are not using an integral number of records.
choose = 1
call inputi(

& ‘ Type 1 to take Closest record start, 2 to re-specify time',
& choose,
& ' Closest may be earlier or later than the chosen time,')
if (choose.eq.l)then
time_difference = anint (time_difference / unit_time) *
] unit timc

else

APPENDIX B

. e

274

SRA

gt

RIS
=K

53

..‘
’
(\vﬂl

‘
Yy

APPENDIX B

type®,' Time dlfference must pDe a mulliple of', seconds,
' seconds.'
redo =

end if

end if

return

end

7 - Routine to Decode Switches in Filename

A R s e e aa et P I et R ar i enstsse s e teratrilRuisessssacnactteserssencerttnroe

SUBROUTINE NAME: SWITTHES

(e e s e s e e s TR e st et arsate IR Ite s il tesniaRivistousrenntsesetateney

Written by:
Joseph B. Farrell
DREA

3 Jul. 1986

Latest revision: 3 Jul. 1986

(s N s NoNaNaNARSRRNS]

This subroutine picks switches from a user input f!{lename.
subroutine switches (filerame, verify,start_flle,stop flle)
character filename* 64

INTEGER®*2 number
INTEGER*2 start flle
INTEGER*2 stop_Tile
INTEGER*2 start
INTEGER®*2 stop

logical verity
Covennnne
Cme= In-zializo variablcs
<
verify = _FALSE.
C:;:.'.Check to see if verify flag is present.
C
start = index(filename , '/V'}
1€(start .ne. 0) verify = ,TRUE.
Ciiiiienenesascnecsanssssaenussorenossscoasnaancaseanssssnassnssansasossens
Comm Look for a START flag , and if present decode the .taztinq file
C-=- rumber.
c
start = index (filename , '/START=')
if (start .ne. 0) then
start = start + 7
$top = index(filename(start:) , /' }
if (stop .eq. O) then
stop = len2(filename)
number = gtop - (start-1)
else
stop = start + stop - 2
number = stop - (start-1)
end 1f
decode (number,100,filename (start:stop)) start_file
pReiel format(12)
€ iitieeeenerssroantsarvoosnacssonsncssassoraccassassssnnnas ceesanses
C-=- Look for a STOP flag , and if present decode the ntoppinq file
[number.
[+
start = {ndex (filename , ‘'/STOP=')
if (start .ne. 0) then
start = start + 6
stop = index(filename(start:) , ' ')
1 (stop .eq. O) then
stop = len2(filename)
number = stop -~ (start - 1)
else
stop = start + stop - 2
number = stop -~ (start - 1)
end {f
decode (number,100,filename(start:stop)) stop_file
else
stop_file = start_file
end {f
end if
c21l" " Look for switch mark and remove all switches from ¢
C
start « index (filename , °'/')
12 (start .ne. 0) then
filename (start:lien2 (filename)) = ' '
end if

return

APPENDIX B

d'
‘1]‘& Y W W0

J\gl'ﬁ\af‘ g 'l‘ﬁfnf :}B’ o $\ﬂ=§'ﬁ

APPENDIX B 45
end
. . .
BS - Routine to Determine Wildcard File List
:l'".t'."‘I...'I.'..."".".."....--‘..."'-...'.‘.""'.'..-."".'
< Subroutine NAME: Disk_Wildcard *
:.t.l..c--"'.-i"'.!"ttt.....'...-'..'-"t-"ti"t""."".t.'..'!."
c
< Written by:
c Joseph B. Farrell
C D
c 10 Jul. 1986
< Latest revision: 7 Aug. 1986
subroutine disx_wildcarg(ifile,itime,wille)}
CHARACTER string*ed
CHARACTER 1file*64
CHARACTER wfile*64
INTEGER"4 dev_Ilag
- INTEGER®4 itime
221077758 3 airectory using the input filspecs of ifile (first time only).
tf(itime.eq.l)then
string=‘dir/siz/co:l/ouitransfer.tmp ‘//ifile
istatus=libSspawn (Vdescr(string(l:len2(string))))
{f{.not.istatus)call libSstop(bval (istatus))
SRRRREEE Readqarbaqnxom e dinctc;éy:'fi.l.e'
open{unit=17, status='cld’', file="transfer.tmp’', form="'formatted’,
1 carriagecontrol=‘list’)
read(i’?,*) ! gkip empty line
read{l7,*} ! skip dir name line
read(17,*) ! skip empty line
end if
read(17,10C1C,arr=10) {string(j:3), 3=1,21)
1ol format (21al)
Le(string(l:l) . eq.* *)go to 10
dev _fiag = index(ifile,':")
dc T = 1, dev_flag
wiile(j:3) = ifile(3:))
end do
do 3 = 1, {index(string, ';*)1-1})
k = 3+ dev_flag
wfile(k:k) = string(3:4)
end do
return
P stop ‘No more flles match the i{nput spec.’
end
. -
B9 - Routine for Data Input from File NN
‘."\’
C-t'tc-'t'.t"..-.""'t'n.t....".""'.."l'i""l‘t"'.""t‘.'-.."' *\
Subrout ine NAME: READER . T\
ct't.il.t.n‘.-.t'..'t'...'.l'-'t-.I".I"'n.t..tl'.'!"..."".."..'l" \...
A

&

Written Dby:
Joseph B. Farrell
DREA

25 Aug. 1986

AN NaNoNaRaNs]

Latest revision: 3C Aug. 1986

subroutine reader (blocks_to_read,bytes_per _block,disk, raw_bytes, N
quit_fiag, jrec, iblk, nblocks, quit _fiag2, inpit _channel,
¢ disk_input_channel,blocks_per_set) K

-

IMPLICIT INTEGER*4 (a-2)

byt e raw_byte_data (50000)

integer®4 blocks_to_read

integer®4 biucks_to_skip B
integer*? bytes_per_block

integer*$ disk

integer®? input channel ¥
integer*4 disk_Tnput_channe. .
integer*4 raw_bytes ~

integer*? text iosp(4)

integer*4 qai’_f.ac

APPENDIX B B

46 APPENDIX B

integer*$ quit_flag2
integer=4 Jjrec
integer+*4 iblk
integer*4 nblocks

common /raw/raw_byte_data

external ioS_skipfile,ioS_readvblk, io$_skiprecord, io$_rewind

e R R R R N R I R R R N A A A R I L A S R I L AL B SRS I
C-- Read in a frame of data from tape or disk.

if(jrec.eq.1l) parity count = 0

if{disk.ne.l)then

-- Read from Magtape.

[aNaNS]

do i = l,blocks_:o_read
parity flag = C
mov = (i{-1)*bytes per block + 1
82 status=sysSqiow(, tval(inpu. channel),io$S_readvblk,
text_iosb,,
,Arel (raw_byte_data{Mov)),sval (bytes_per_block),,,,)

baes

-- Check to see 1f there was an error on the tape read.

[aNaNe]

1f(.not.etatus.or.text_losb(2).eq.0)then
frames_stored = jrec -1
call set_cursor(2l,l)
if(text_iosb(4).ne.2.and.text_iosb(4)
9 .ne.10)then
parity_counrt = parity_count + 1
C-- 1f parity error on the first record, skip into the f‘le until we get
C-- tc the next block which begins with the first channel, then begirn.
C
i1f{Jrec.eq.l.and.l.le.biocks_per sel)then
iype*,' Error reading first record!!‘
blocks_to_skip = b;ocks_per_set -1
-f(b;ocxs to_skip.ne.C)then
status-sysSqiou(,!val(1npu~ channel),
i0S_skiprecord,text iosk,,,
& sval(blocks_te_skip),,,,,)
if(.not.status)call libSstop(sval (status))
end i
Qo to 92
end if
type*,' LError reading recorc¢': Error count=',
& parity_count
C-- If a pari ty error occurs on a record , go back and reruad the last
C-- gooc piock cf data whicl begins with the correct channel.

"

k]

parity flag = parity flag + 1
blocks_to_skip = - (blocks _per_set + 1)
s:a.us-sysSquu(,\va.(Snpu. channel),

& ioS_skiprecord,tex:_iosb,,,
6 Aval (biocks to skip),,,,,
if{.not.status)call libSstop (ival (status))
ge to 92
else

type*, ‘End of file encountered,
i (raw_bytes.ne.C)ther
Quit_flag =1
rerurn
end {f
end i¢
type®, 'Saving ', frames_stored, ' frames and exiting.
quit_fiag2 = 1 -
return
enc Lf
raw _bytes = rau _bytes + bytes per piock
fiparity_f.ag.ne.C)then
b.ocxs to sks p e parity_fiag * p.ocks_per_se:
s.a:us-:ys?qiou(,ival(lnpu' _channel:,

3 .05 _sxiprecord,tex:_iosb,,,
3 \vaA(b.ocks to sKip), ., ..)
f{.not.szatUs)Cail .ibSstop(tval (status))
-nd b4
ena ac
e.se

lrese tc see .! The next reald wiii put s past
~- 'Tre -. I8 "¢ account for the fact that DBREAD courts {ror (ra%ner
-~ trar ..} (Pemerber tha. we haver't read biock iblk yel.!

1!";:.:4c;ockl te_read) .3%. (nblocks-1)}then

Il we're ot cf da a, dump what we've co..ected, ©r simp.y ciose
tre flles (! we have no data tc dump,

writeiS, v 'heac puts us pas. EOF. biks te reacd.', pnioCks _tc_read

APPENDIX B

o 7

ppeLlL L

i £ v -'n_'

”](lf" 24

' e AN

:
%{ -
‘ A
APPENDIX B 47 S
§ 2
write(5,*)'iblk & nblks', iblk,nblocks .
blocks_to_read = nblocks = iblk sy
write(5,*) ‘New blks to reac',Blocks_to_read ol
pause LN
type*,* End of file encountered.' :
if (blocks_to_read.qgt.0)then
raw_bytes = blocks_to_read * bytes_per block .
quit_flag = 1 ,p\ \
go to 33 ')
else J\;
if(J.ne.l) quit_flag2 = 2 'l‘\ Q
return i
end 1f TN
else ¢
Clhesd Hon Biek Hial T ' :
raw_bytes « blocks_to_read * bytes_per block >,
33 call dbread(disk 1nput channe.,nw byte data,blocks_tc_read, _.'-_.
& ierror, lblk) »
- if(iferror.ne.C)then S
type*, 'Error encountered on disk read.' R
type*, ‘Saving what I can and exiting.' _c'..-
quit_flag2 =1 .P\.
return NG
end if m)
- {blk=iblk+blocks_to_read
call dbwalt (disk_input_channel) -
end if e,
end if RS
return J'\
end i
v "
s
. .::\'
B10 - Transfer Status Routine "
e
CCCCTECCCCCTCCCCCCCCCCTCCCCCLECCLTCCCCCCCCCCCCCLCCCCCCCCTCCLCCLCCCCCCee TN
Sucroutine : TRANSFER_STATUS o
DA
Created : Summer, 1982 by U.Vic Physics Co-op student Laurie Bunch -_.'-
AN
Major Modifications : Spring, 1986 by Joe Farrell - Deep Water Acoustics BN
Purpose : To display to the user the major parameters in the .’-:‘
Surveillance Acoustics TRANSFER program during execution. -
Called by : TRANSFER R
NS
Cails : 1) DATE_TIME = Subroutine which obtains the system date s
and time in an ASCII format, -,‘-(
3) ERASE_SCREEN = Subroutine which erases the screen from o
the specified position to the end. AR
4) SET_CURSCR = Subroutine which sets the cursor to a ."-.'(
specified position on the terminal screen. .-’..(
S) FORSSECNDS = Fortran library routine whicr cetermines ’,

the number of seconds difference between

the number specified anc tre current time.
€) COMPRESS = Subroutine which compresses the chosen

channels into a format suitat.e for display.

-—- Parameter and variable definitions.

REQUIRED PARAMETERS:
CHANNELS_CHOSEN = Channels corresponding to the hydrophones
chosen for study.
nrec « Number of input fi{le records processed.
FILES = Input anag output flles,

NN NNANOMNTONNNNNONNTOONNN000NONO00000000

HYDRCPHCONES CHCSEN = Hydrophones choser fcr siuay, ~vz
NUMBEF._| CHOSEN = Number of hydrophones chcser for s- ady . AR .
nurber c. frames = Upper iimit placed by the _.cer 2o the "-.'
- rumber of frames to be procecsac. et
frames_procesed = Number of frames whict hrave reen processecd -'\~‘
ALABEL = ASCII label from input tape. .'\'-‘
TIME_OFFSET = Time in seconds which the user wishes tc step e

into the input data. ,-\

TCTAL_CHANNELS = Total number of channels or "ne {-put fiie.
INTERNAL VARIABLES:

AVERAGE _TIME_per frame = Amount of syster -“irc¢ :no. CPU) that N
one frame requirec. "N

BASE = The number of rows reguired to pr: ~a‘tor -."\
panmeters up ¢ the channe.is ch oY
BASE_TIME = Time zero wher the timer was : [N \-‘.
DATETANT TIME e Syster date and time in &r 13- 1 ! rmat. PO
DELTA TIME = Time from bDase time L0 presen:. A
KMS_TIME OFFSET = Hours, minules anc seccnd~ e« ..v:.ert of -‘}'
- the time cifsel speci’ +: . ‘o user i- LSAY

seconds.
eV e

APPENDIX B R

48

APPENDIX B

Cam== Main code

SUBROUTINE TRANSFER_STATUS (ALABEL, TIN, TOUT,
‘ NUMBER_CHOSEN,
‘ TCTAL_CHANNELS, CHANNELS_CHOSEN,
& HYDROPHONES_CHOSEN, Number_of_frames)
waresa s st sr e e encananes R IR I T R R A A A N) sssssesacse DY

Cm== Para're’er and ‘n"e:nal variable declara,ions.
<

CHARACTER* 320 ALABEL

CHARACTER DATE_AND_TIME®*20

CHARACTER* 64 FILES(2)™

CHARACTER*128 OU"VECT

CHARACTER®S8 TIN

CHARACTER"8 T(XJ

INTEGER*4 NUMBER_CHOSEN 'Must be before adijustable array.

INTEGER®2 CHANNELS_CHCSEN (NUMBER_CHOSEN)

INTEGER®2 HYDRO?HOR’ES_CHOSEN (NUMBER_CHOSEN)

INTEGER"2 NELS

INTEGER"2 totai_channels

INTEGER"4 BASE

INTEGER*4 frames_processed

-N‘“Eo:.R% numper_cf_frames

GER*4 FIRST

J\.:GER 4 HMS_TIME_OFFSET(3)

REAL*4 averagQe_time_per_ recorc

REAL*4 BASE_TIME

REAL®4 DELTA_TIME

REAL*4 nrec

REAI*4 PERCENT OVERLAP

REAL"4 TIME_OFFSET
2ili7 7170 files and siatistics passed by corwon for ease.)
N COMMCN /10 _STATISTICS/frames_processed, nrec

COMMON /FILER/FILES

COMMON /OUT/OQUTVECT
S Q-.B¢Phevh!xeng8ystm SimerTTTI e ceean

CALL DATE_TIME (DATE_AND_TIME)

(oo
[
Hod
"
"
M3
0
»
]
e
"
]
e
y
-
(%)
)
o
o
e
o -
.
I
-
3
®
Aol
2]
-
D
e
L.
<
[
P
J
:1
L]
~
o
Il
T
n
Iad
9
-
=
ll
.

IF (frames_processed .EJ. 1) THEN

Print the header.

CALL "RASr _SCTREEN (1,1}

TYPE 1030

gl FCRMAT (*+°,T29, 'FILE TRANSFER STATISTICS')
TYPE 13CC, DATE_AND_TIME

Llle FORMAT (* *,7T31,R)
TYPE 120¢C

L2t FORMAT(* ', 80('='))

TYPE 200C, ALABEL(65:110

20z FORMAT (T3, 'ASCII label : ',A46)
CALL SET CURSOR(5,1)
type 3000, files(2)(1:24)

3720 formast (/t42, 'Outpur flie @ ', A)
type 1001, filies(l) (1:24)

3 format (*+*,23, 'Input {lle : ', A)

z Print the t:me offse: ir ils new form.

TYPE 403C, TIN,TOUT

42L0 FORMAT (/T3,'Starts at : ', A,T42,'Starts at : LAY

< frames is greater thar 500, ther. the program is
< hils the end cf the input ..le {EOT) .

-

IF (number of frames .GL, 300C) THEN
TYPE <027, 'TC ECF’

iy FCRMAT (/73,'Nurber cf frames reguested : ', A6)
ELSE
TYPE SUCL,rurper ol frames
sl FCRMAT (773, 'Nurper 5! f{rames regues:ec . 26)
ENDTF

Print the number cf channe.s out ¢! the ota. number which are
ve.ng stullec. Show alsc the chanheis and the hydrophones they
cerrespend o,

TYPL 650C, NUMBER_CHOSEN, TOTAL_CHANNTLS

APPENDIX B

U

A |!'

[t

o]

APPENDIX B 49 s

‘f"

600C FORMAT (/* *,T3, 'Channel usage : ',I2,' chosen out of ', -,‘.
& I12,' total') .".

C.- P R R I R R I A R N N N NN NN - .‘
Comn Call routine to compress the chosen channels into a format ._"\

Coma sultable for screen output, le. 1-5,7,11,15-24,

c
CALL COMPRESS (Number chosen,Channels chosen, NELS) v
TYPE®*, * Channels ', OUTVECT(:NELS) IN'
CALL COMPRESS (Number _chosen, Hydrophones_chosen, NELS)) >
TYPE~*, ' Acoustic Channels:', OUTVECT (:NELS) A \
C A]
Cam= Print the number of records used, the number of FFI's calculated, : -
Cm== and the average amount of system time per FFT per channel (not .
C--- known on the first call.) '§ "
c []
TYPE 7000, frames processed -
700C FORMAT (/* *,T3,'Number of input file accesses : *‘,If)
| TYPE 8000, nrec RN
| B8OCO FORMAT (/* *,T3, 'Number of records processed : ',£6.2) IQ‘.‘
: TYPE 8100 !
- 81C0 FORMAT (' ', T3, 'Average time per frame : sec’) r
AR,
[-S\
Co=- Set the timer and find the absolute value of time zero. .'\
[} a
- BASE_TIME = FORSSECNDS (0.0)
Citierececearennnssassssossosssesossscsnssnsosssssscsasnssnossvnsssanes
Comm For successive calls just print the dynamic paramters,
C
ELSE
C~
Cmm- Find the amount of system time to have elapsed since time zero.
C
DELTA_TIME = FORSSECNDS (BASE_TIME)
c--
Comm Calculate the average time per FFT per channel.
C
average_time_per_record = DELTA_TIME / nrec
C~~ -
Cem-- Update the system time. RS,
< 7 =
CALL SET_CURSOR({2,30) "o
TYPE 9000, DATE_AND_TIME "a
9000 FORMAT (*+*',RA) P;..'
C F)
Coo=w 2f the number of channels and hydrophones printed on the first call '\:‘-
C--- were less than or equal to 16 then 16 lines were devoted to static atal
Commm parameters; otherwise, 18 lines were devoted to static parameters,
C
IF (NELS .LE. 50) THEN &5
BASE = 15 o
ELSE .h\
BASE = 17 2>
ENDIF LS
Commnn « -'
Comm Update the number of records used, the FFT's completed and the -'\ i
Com= average tire per FFT per channel. ‘\
C -
CALL SET CURSOR({BASE + 2,37)
TYPE 9100, frames_processed ~x
9iC0 FORMAT (*+',16) > N
CALL SET_CURSOR (BASE + 4,33) NS
TYPE 920T, nrec A
9208 FORMAT (*+',£6,1) ‘\J‘\
CALL SET_CURSOR(BASE + 5,27) -
TYPE 9307, average_time_per_record N
9300 FORMAT (*+',F5.2) SN
ENDIF S
RETURN .
END SN0
SUBROUTINE COMPRESS (NUMBER_CHOSEN, INVECT,NELS) ~:";\‘
L
CHARACTER*126 OUTVECT :.-',:.
L4
INTEGER*2 Number_chosen St
INTEGER®*2 INVECT (NUMBER_CHOSEN)
INTEGER 2 Last_flag
INTEGER*2 START
INTEGER®*2 sT
INTEGER*2 Temp_flag
INTEGER*2 NELS
INTEGER*2 L
INTEGER*2 M
COMMON /OUT/OUTVECT
1f (number_chosen.eq.1)then
encode (2,100, cutvect (1:2)) invect (1)
ic0 format (12)
nels = 2

50

vy

-«
by

..'Q » e
\ﬂﬂ‘f

APPENDIX B

retuJurr.
eng if
START = INVECLT "L
ST = START
NELS = C

Last_f.aQ = O

= .t - -
:m.\:'..lq :

M2

OC . = i Number_ choser

IF(J.EC.NumDer chose”. .Ast I.ag -
IFlast fiag.ET.L1 THEN
IFINVECST (00 JEL. (ST TMEN
ST = §T . &
CALL BUILDEK L, M, NELS, _as® ‘.ag. 5tart, 5t
ELSE
CALL BUILDER!L, M. NELS, Temp f.ag.Star.. st
ST e INVECT
CALL BUILDER ., M, NELS, Las® {.ag,3U.S"

ENT IF
ELSE
IFVINVEST D LEQ. iSTeL THEM
§T e ST + L

ELSE
TALL BUILDER (L, M, NELS, a8 _!.8G. Start, s
START = INVECT !

ST = START
ENT IF
ENC IF
END DX
TURN
ENC

SUBROUTINE BUILDERL,M,NELS, Las® f.a;, S"art. S"ugp

CHARACTER".28 OQUTVECT
CHARACTER®. SEPARATOR
INTEGER®2 as f.ag
INTEGER®2 START
INTEGER®2 sTeP
INTEGER"Z Mcre f.ag
INTEGER®Z NELS™

INTEGER®2 -
INTEGER®*2Z L

COMMON /0U7T/JUTVECT

IF (START.EC.STOP) THEN
ENCODE (2, 100, QUTVECT (L:M, | START
FORMAT (12;
SEPARATOR =« °,
CALL FILLER(START, L, M, SEPARATCE, LAST FLAS, NELS
ELSE -
ENCCDE (2,100, OUTVECT (L1P START
SEPARATOR = '-~°
CALL FILLERI(START,.
ENCODE (2, 000, SUTVETT
SEPARATCE =
CALL FILLER'STOF, L, ¥, SEPARATOR. LAY TLAL NI_S

(3]
O

'

CSEPARAT R, LATT FLAG NED S

™ STTh

ENC IF
RETURN

END

SUBROUTINE FILLER'ELEMENT, L, ™ SEPARATTH, LAST F AT NE.:

“HARACTER= .20 OCTVEST
CHARACTER® . SEPARATOR

INTEGER®2 Las ‘lag
INTEGER®? ELEMENT

INTEGER®2 NELS
INTEGER®*Z s
INTEGER®Z L4

TOMMON /OUT/OUTVECST

OUTVECT (m: ¥
Y. ANT . SEPARATOR E L THFR

OUTVECT (M:¥. = SEPARATLE

ELSE
IF(Las. 2. a5 B0 L AT SEFARATLE B Trtw
NELS ® NELS « &
ELSE
QUTVETY (Mo i (M=, » SLFARATZ:

APPENDIX B

~

LRSS ﬁ‘.'-- Ay ‘-'_\. % 'c‘.‘!‘ LIS IR A, T
\."'.} NNy R CHLs 0t

’
4

PR XA AN

APPENDIX B 51 g,

h ‘::,
NELS = NELS + 3 .i)

Lei-3 Ry

Me¥ -3 Rty

ENT IF (U

ENC IF avh.

RETURN
EXT

xRN

LAY
o f"f."‘.-'." ,’{ %

e e
aa’y sy

h

v .
1]

2,

LA ARRR] o W -9
1'¢fﬁﬁd 'Qﬁi;yb

APPENDIX B >

O T3 N O AR TR TR I IO AR R O T I oo 4 g0 “pafl gk 3t

UNLIMITED DISTRIBUTION c3

UNCLASSIFIED

Sesurity cuum.n;

DOCUMENT CONTROL DATA - R & D
{Secuiity classification of title, body of and inc ion st be entered when the oversll document v classfed!

1. ORIGINATING ACTIVITY 2s. DOCUMENT SECURITY CLASSIFICATION

UNCL ASSIFTED
DREA 2». GROUP Tc

3. DOCUMENT TITLE

A VERSATILE TOOL FOR DATA FILE TRANSFER AND MANIPULATION

4 DESCRIPTIVE NOTES (T] [) , ,
YPe of report snd incws i) T echnical Communication, Dec. 1986

5. AUTHORIS) (Last narme, tirst nemae, middie initisl)

FARRELL, Joseph B.

6. DOCUMENT DATE 7s. TOTAL NO. OF PAGES 5. NO. OF REFS
January 41887 57 3

8. PROJECT OR GRANT NO. 9. ORIGINATOR'S COCUMENT NUMBER(S!
DREA TECHNICAL COMMUNICATION 87/ 303

8b. CONTRACT NO. 0. OTHER DOCUMENT NO.(B) {Any other numbers that may be
amigned this document)

10 DISTRIBUTION STATEMENT

UNLIMITED DISTRIBUTION

(A T AN]

11 SUPPLEMENTARY NOTES 12. SPONSORING ACTIVITY

13 ABSTRACT

This document describes in detail a software tool for manipulating data files. The
Surveillance Acoustics section at Defence Research Establishment Atlantic has acquired
VAX computers over the last few years, and analysis tasks which were formerly done on
PDP-11 computers are now being moved to the VAXen. PDP-11s are still used in the at-
sea data collection role, so some means is necessary of ransferring the data files thus
produced to the VAXen for signal processing and analysis. PDP-11 data files are typically
located on 9-track magnetic tape, so one method of transferring the data would be to read
PDP-11 tapes on the VAXen. The software tool described here (a program named
TRANSFER) was written, in part, to perform this data transfer chore, taking into account
the special formats and header information in the files produced by the PDP-11s.
Manipulation of data files already residing on a VAX is also possible using TRANSFER.
The program is versatile, allowing the user to choose channels and data segments to be

VY LRI

LR
»

k JLICs Pn]
»

[

transferred between files with a high degree of freedom. . . .Y
Hisfs
LR 21]
RIS NS) » e p et e e, s ettty ta . .- . v -
RN e T L e A g N T e T
v A L PR RIS)

X AR

AR

-

LA S

AT Y

A

54 UNCLASSIFIED , :
T T etuey Gl T T]

KEY WORDS .

Computers u

VAX £§
1

File Transfer r

Data Manipulation

Underwater Acoustics » '
,
.
¢
1
>
b,
INSTRUCTIONS .8
' ORIGINATING ACTIVITY Enter the neme snd sddvess of the $b. OTHER DOCUMENT NUMBER(S). I the document has been oy
0TgeN2aton weung the document. ony other s (oither by the orgpnassar N
uhmmlummww L}
v DOCUMENT SECURITY CLAslncA'nou Enter the overs :
ecunity U o! the d g 90C18! warning 10. DISTRIBUTION I'TAT!M!NY Enter sy kmitators on X
terms whenever spplcable. turther o m then thoes wnpowd O,
by sscurity clgsedl wm. d wuch & N b

2. GROUP Enter security rociosmiication group number. The three "
rouus are getined 1 Agpendix ‘M of the DRB Security Reguletions. (1) “Queitlied requesners mey sbtein copwn of the .'

document frem thev delence GOCUMENISON comer.”
3 DOCUMENT TITLE Enter the compists doCument title n ot
capital lotrevs Titles in ol coses Mld s vnciemited. | o @ A of s m

wiiciently descrigtve Uitte clossit. i not sutherized mmn prior approvel frem "
cotion. show title m'm-on m ™e M Ono-coprtol-lntter Orignating activity.” f 0
Sbtweviaton i1n por v g the title.)

11. SUPPLEMENTARY NOTES Use for aduitional enplenstory : N

4 OESCRIPTIVE NOTES. Enter the category of document, o.g nOYWS.
tachmical report, techmcal note or techncl igtier. | appropr:-
ate, enter the type Of COCUMEN!, 0.g. INTENIM, DrOgress. 12. SPONSORING ACTIVITY Enter the name of the dapertmental
summery, snnusi or finsl. Gve the incluswe dates when o project office or IEhorstory WOMOring the resssrch and b Y
soaciic raporting peniod is covered. development. include sddress. i

S AUTHORIS): Enter the namels) of suthor(s) s shown on or 13. ABSTRACT Enter an sbetract gawving 8 brief ond factue!

n the document. ENter 18e1 neme, st NEME, Mddie initel. y of the d oven though hh may skeo sppesr .
11 mutitary show rank. The narme of the principel suthor 8 en oleowhere in the body of the document e It w highly AKX
LIS MInmUM TegUWeMent. desrsble thet the sbetrect of clemified dosuments be uncisse- N

Sed. Bach persgreph of the sbewstt thal end with en)

6. DOCUMENT DATE. Enter the date imonth, yesr) of indiostion of the security olemificstion of the ink oth)
Estabinhment spprovel for pu of the do = the peragraph (unisss the document itesl! is wnolassified! 2

represeneed @ (TSI, (B), (C), (R), or (V). iy

Ja TOTAL NUMBER OF PAGES The totel page count theuld (%
10/1ow NOrMBl PEEINETION Drocecures, 1.0, SNNT the AUMBDSY The length of the » be Umited 10 20 vinglo-epaced
of peges conteming informeron nonderd typowriton knes; T\ wches long.

7o NUMBER OF REFEMENCES Enter the 1om) number of 14 KEY WORDS: Koy words 7% technicsily mesningtvi terme o N
reterences Cited i the decUment. hort phrases et cherscterize o dacument end S0Uid be helphwl - »

" Png ™ o Koy worth hou'd be telected e e

B PROJECT OR GRANT NUMBER (f appropriate, onier the thet RO SBCUrity Classihicetion w required. Igentitiers, sueh oo '-_
ApPHCIDIE 1eserch 8nd GEwSIORMEN| Prowct OF grant AUMBer mode! desigr . (rage NEMe, Miinery prowet eode N',
UNGET WIICh The BOCUMEN! Was wWritien. m.m-ﬂcw.nv‘uuus-mmmﬂ .,

be folowed by on of sechmeos! "

81 CONTRACT NUMBER It appropriste, enter the apphicable '
AunbEr under wiich the GOCUMent wae writien.

% ORIG NATOR'S DOCUMENT NUMBERIS! Enter the NS
1l ucument Aumher Dy wineh the document will be \’
wientifux! and controlied by the Orgnsting SCtivity. Thes ~
nUMDE MUt BB JMQUE 10 thes W

Y
~c!
NS
<
‘.
‘ 1
ve
)
I.’
L,
Ny
»
\
L
N A N AENT IENEN R AP '.' , J\J. ,’ A AR AT A AN A Nt el e . S . N
Y . . ‘ - AN . ~ ~
v S -.\ W \‘,\. \'\\\..\ \ N

(20 l‘.. . WA, X 1 a0 . S O o B v

m Lk ol Al ot

yyre T e e R £ T - N e - -~ - - -

[1C

T - - - P PR T PP OB LN PP R P ~'.. N -
‘:l"‘l".I’..l', h‘,‘i'. L2 U A 1A . *V' " 'v &, A 1A \ .

